EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Models of Computation

    Book Details:
  • Author : Maribel Fernandez
  • Publisher : Springer Science & Business Media
  • Release : 2009-04-14
  • ISBN : 1848824343
  • Pages : 188 pages

Download or read book Models of Computation written by Maribel Fernandez and published by Springer Science & Business Media. This book was released on 2009-04-14 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Concise Introduction to Computation Models and Computability Theory provides an introduction to the essential concepts in computability, using several models of computation, from the standard Turing Machines and Recursive Functions, to the modern computation models inspired by quantum physics. An in-depth analysis of the basic concepts underlying each model of computation is provided. Divided into two parts, the first highlights the traditional computation models used in the first studies on computability: - Automata and Turing Machines; - Recursive functions and the Lambda-Calculus; - Logic-based computation models. and the second part covers object-oriented and interaction-based models. There is also a chapter on concurrency, and a final chapter on emergent computation models inspired by quantum mechanics. At the end of each chapter there is a discussion on the use of computation models in the design of programming languages.

Book Models of Computation

Download or read book Models of Computation written by Roberto Bruni and published by Springer. This book was released on 2017-04-03 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents in their basic form the most important models of computation, their basic programming paradigms, and their mathematical descriptions, both concrete and abstract. Each model is accompanied by relevant formal techniques for reasoning on it and for proving some properties. After preliminary chapters that introduce the notions of structure and meaning, semantic methods, inference rules, and logic programming, the authors arrange their chapters into parts on IMP, a simple imperative language; HOFL, a higher-order functional language; concurrent, nondeterministic and interactive models; and probabilistic/stochastic models. The authors have class-tested the book content over many years, and it will be valuable for graduate and advanced undergraduate students of theoretical computer science and distributed systems, and for researchers in this domain. Each chapter of the book concludes with a list of exercises addressing the key techniques introduced, solutions to selected exercises are offered at the end of the book.

Book Models of Computation

    Book Details:
  • Author :
  • Publisher :
  • Release : 2002-01-01
  • ISBN : 9781586924386
  • Pages : pages

Download or read book Models of Computation written by and published by . This book was released on 2002-01-01 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Algebraic Computability and Enumeration Models

Download or read book Algebraic Computability and Enumeration Models written by Cyrus F. Nourani and published by Apple Academic Press. This book was released on 2015-11-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, Algebraic Computability and Enumeration Models: Recursion Theory and Descriptive Complexity, presents new techniques with functorial models to address important areas on pure mathematics and computability theory from the algebraic viewpoint. The reader is first introduced to categories and functorial models, with Kleene algebra examples for languages. Functorial models for Peano arithmetic are described toward important computational complexity areas on a Hilbert program, leading to computability with initial models. Infinite language categories are also introduced to explain descriptive complexity with recursive computability with admissible sets and urelements. Algebraic and categorical realizability is staged on several levels, addressing new computability questions with omitting types realizably. Further applications to computing with ultrafilters on sets and Turing degree computability are examined. Functorial models computability is presented with algebraic trees realizing intuitionistic types of models. New homotopy techniques are applied to Marin Lof types of computations with model categories. Functorial computability, induction, and recursion are examined in view of the above, presenting new computability techniques with monad transformations and projective sets. This informative volume will give readers a complete new feel for models, computability, recursion sets, complexity, and realizability. This book pulls together functorial thoughts, models, computability, sets, recursion, arithmetic hierarchy, filters, with real tree computing areas, presented in a very intuitive manner for university teaching, with exercises for every chapter. The book will also prove valuable for faculty in computer science and mathematics.

Book Models of Computation and Formal Languages

Download or read book Models of Computation and Formal Languages written by R. Gregory Taylor and published by Oxford University Press on Demand. This book was released on 1998 with total page 667 pages. Available in PDF, EPUB and Kindle. Book excerpt: Models of Computation and Formal Languages presents a comprehensive and rigorous treatment of the theory of computability. The text takes a novel approach focusing on computational models and is the first book of its kind to feature companion software. Deus Ex Machina, developed by Nicolae Savoiu, comprises software simulations of the various computational models considered and incorporates numerous examples in a user-friendly format. Part I of the text introduces several universal models including Turing machines, Markov algorithms, and register machines. Complexity theory is integrated gradually, starting in Chapter 1. The vector machine model of parallel computation is covered thoroughly both in text and software. Part II develops the Chomsky hierarchy of formal languages and provides both a grammar-theoretic and an automata-theoretic characterization of each language family. Applications to programming languages round out an in-depth theoretical discussion, making this an ideal text for students approaching this subject for the first time. Ancillary sections of several chapters relate classical computability theory to the philosophy of mind, cognitive science, and theoretical linguistics. Ideal for Theory of Computability and Theory of Algorithms courses at the advanced undergraduate or beginning graduate level, Models of Computation and Formal Languages is one of the only texts that... - - Features accompanying software available on the World Wide Web at http: //home.manhattan.edu/ gregory.taylor/thcomp/ Adopts an integrated approach to complexity theory - Offers a solutions manual containing full solutions to several hundred exercises. Most of these solutions are available to students on the World Wide Web at http: //home.manhattan.edu/ gregory.taylor/thcomp - Features examples relating the theory of computation to the probable programming experience of an undergraduate computer science major

Book Turing Computability

    Book Details:
  • Author : Robert I. Soare
  • Publisher : Springer
  • Release : 2016-06-20
  • ISBN : 3642319335
  • Pages : 289 pages

Download or read book Turing Computability written by Robert I. Soare and published by Springer. This book was released on 2016-06-20 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turing's famous 1936 paper introduced a formal definition of a computing machine, a Turing machine. This model led to both the development of actual computers and to computability theory, the study of what machines can and cannot compute. This book presents classical computability theory from Turing and Post to current results and methods, and their use in studying the information content of algebraic structures, models, and their relation to Peano arithmetic. The author presents the subject as an art to be practiced, and an art in the aesthetic sense of inherent beauty which all mathematicians recognize in their subject. Part I gives a thorough development of the foundations of computability, from the definition of Turing machines up to finite injury priority arguments. Key topics include relative computability, and computably enumerable sets, those which can be effectively listed but not necessarily effectively decided, such as the theorems of Peano arithmetic. Part II includes the study of computably open and closed sets of reals and basis and nonbasis theorems for effectively closed sets. Part III covers minimal Turing degrees. Part IV is an introduction to games and their use in proving theorems. Finally, Part V offers a short history of computability theory. The author has honed the content over decades according to feedback from students, lecturers, and researchers around the world. Most chapters include exercises, and the material is carefully structured according to importance and difficulty. The book is suitable for advanced undergraduate and graduate students in computer science and mathematics and researchers engaged with computability and mathematical logic.

Book Computability and Complexity

Download or read book Computability and Complexity written by Neil D. Jones and published by MIT Press. This book was released on 1997 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computability and complexity theory should be of central concern to practitioners as well as theorists. Unfortunately, however, the field is known for its impenetrability. Neil Jones's goal as an educator and author is to build a bridge between computability and complexity theory and other areas of computer science, especially programming. In a shift away from the Turing machine- and G�del number-oriented classical approaches, Jones uses concepts familiar from programming languages to make computability and complexity more accessible to computer scientists and more applicable to practical programming problems. According to Jones, the fields of computability and complexity theory, as well as programming languages and semantics, have a great deal to offer each other. Computability and complexity theory have a breadth, depth, and generality not often seen in programming languages. The programming language community, meanwhile, has a firm grasp of algorithm design, presentation, and implementation. In addition, programming languages sometimes provide computational models that are more realistic in certain crucial aspects than traditional models. New results in the book include a proof that constant time factors do matter for its programming-oriented model of computation. (In contrast, Turing machines have a counterintuitive "constant speedup" property: that almost any program can be made to run faster, by any amount. Its proof involves techniques irrelevant to practice.) Further results include simple characterizations in programming terms of the central complexity classes PTIME and LOGSPACE, and a new approach to complete problems for NLOGSPACE, PTIME, NPTIME, and PSPACE, uniformly based on Boolean programs. Foundations of Computing series

Book Higher Order Computability

Download or read book Higher Order Computability written by John Longley and published by Springer. This book was released on 2015-11-06 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a self-contained exposition of the theory of computability in a higher-order context, where 'computable operations' may themselves be passed as arguments to other computable operations. The subject originated in the 1950s with the work of Kleene, Kreisel and others, and has since expanded in many different directions under the influence of workers from both mathematical logic and computer science. The ideas of higher-order computability have proved valuable both for elucidating the constructive content of logical systems, and for investigating the expressive power of various higher-order programming languages. In contrast to the well-known situation for first-order functions, it turns out that at higher types there are several different notions of computability competing for our attention, and each of these has given rise to its own strand of research. In this book, the authors offer an integrated treatment that draws together many of these strands within a unifying framework, revealing not only the range of possible computability concepts but the relationships between them. The book will serve as an ideal introduction to the field for beginning graduate students, as well as a reference for advanced researchers

Book The Foundations of Computability Theory

Download or read book The Foundations of Computability Theory written by Borut Robič and published by Springer. This book was released on 2015-09-14 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an original and informative view of the development of fundamental concepts of computability theory. The treatment is put into historical context, emphasizing the motivation for ideas as well as their logical and formal development. In Part I the author introduces computability theory, with chapters on the foundational crisis of mathematics in the early twentieth century, and formalism; in Part II he explains classical computability theory, with chapters on the quest for formalization, the Turing Machine, and early successes such as defining incomputable problems, c.e. (computably enumerable) sets, and developing methods for proving incomputability; in Part III he explains relative computability, with chapters on computation with external help, degrees of unsolvability, the Turing hierarchy of unsolvability, the class of degrees of unsolvability, c.e. degrees and the priority method, and the arithmetical hierarchy. This is a gentle introduction from the origins of computability theory up to current research, and it will be of value as a textbook and guide for advanced undergraduate and graduate students and researchers in the domains of computability theory and theoretical computer science.

Book Automata and Computability

Download or read book Automata and Computability written by Dexter C. Kozen and published by Springer. This book was released on 2013-11-11 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: These are my lecture notes from CS381/481: Automata and Computability Theory, a one-semester senior-level course I have taught at Cornell Uni versity for many years. I took this course myself in thc fall of 1974 as a first-year Ph.D. student at Cornell from Juris Hartmanis and have been in love with the subject ever sin,:e. The course is required for computer science majors at Cornell. It exists in two forms: CS481, an honors version; and CS381, a somewhat gentler paced version. The syllabus is roughly the same, but CS481 go es deeper into thc subject, covers more material, and is taught at a more abstract level. Students are encouraged to start off in one or the other, then switch within the first few weeks if they find the other version more suitaLle to their level of mathematical skill. The purpose of t.hc course is twofold: to introduce computer science students to the rieh heritage of models and abstractions that have arisen over the years; and to dew!c'p the capacity to form abstractions of their own and reason in terms of them.

Book A Programming Approach to Computability

Download or read book A Programming Approach to Computability written by A.J. Kfoury and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computability theory is at the heart of theoretical computer science. Yet, ironically, many of its basic results were discovered by mathematical logicians prior to the development of the first stored-program computer. As a result, many texts on computability theory strike today's computer science students as far removed from their concerns. To remedy this, we base our approach to computability on the language of while-programs, a lean subset of PASCAL, and postpone consideration of such classic models as Turing machines, string-rewriting systems, and p. -recursive functions till the final chapter. Moreover, we balance the presentation of un solvability results such as the unsolvability of the Halting Problem with a presentation of the positive results of modern programming methodology, including the use of proof rules, and the denotational semantics of programs. Computer science seeks to provide a scientific basis for the study of information processing, the solution of problems by algorithms, and the design and programming of computers. The last 40 years have seen increasing sophistication in the science, in the microelectronics which has made machines of staggering complexity economically feasible, in the advances in programming methodology which allow immense programs to be designed with increasing speed and reduced error, and in the develop ment of mathematical techniques to allow the rigorous specification of program, process, and machine.

Book Computability and Complexity Theory

Download or read book Computability and Complexity Theory written by Steven Homer and published by Springer Science & Business Media. This book was released on 2011-12-09 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised and extensively expanded edition of Computability and Complexity Theory comprises essential materials that are core knowledge in the theory of computation. The book is self-contained, with a preliminary chapter describing key mathematical concepts and notations. Subsequent chapters move from the qualitative aspects of classical computability theory to the quantitative aspects of complexity theory. Dedicated chapters on undecidability, NP-completeness, and relative computability focus on the limitations of computability and the distinctions between feasible and intractable. Substantial new content in this edition includes: a chapter on nonuniformity studying Boolean circuits, advice classes and the important result of Karp─Lipton. a chapter studying properties of the fundamental probabilistic complexity classes a study of the alternating Turing machine and uniform circuit classes. an introduction of counting classes, proving the famous results of Valiant and Vazirani and of Toda a thorough treatment of the proof that IP is identical to PSPACE With its accessibility and well-devised organization, this text/reference is an excellent resource and guide for those looking to develop a solid grounding in the theory of computing. Beginning graduates, advanced undergraduates, and professionals involved in theoretical computer science, complexity theory, and computability will find the book an essential and practical learning tool. Topics and features: Concise, focused materials cover the most fundamental concepts and results in the field of modern complexity theory, including the theory of NP-completeness, NP-hardness, the polynomial hierarchy, and complete problems for other complexity classes Contains information that otherwise exists only in research literature and presents it in a unified, simplified manner Provides key mathematical background information, including sections on logic and number theory and algebra Supported by numerous exercises and supplementary problems for reinforcement and self-study purposes

Book Computability  Complexity  and Languages

Download or read book Computability Complexity and Languages written by Martin Davis and published by Academic Press. This book was released on 1994-02-03 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory text covers the key areas of computer science, including recursive function theory, formal languages, and automata. Additions to the second edition include: extended exercise sets, which vary in difficulty; expanded section on recursion theory; new chapters on program verification and logic programming; updated references and examples throughout.

Book Computability and Models

    Book Details:
  • Author : Barry S. Cooper
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461507553
  • Pages : 388 pages

Download or read book Computability and Models written by Barry S. Cooper and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Science involves descriptions of the world we live in. It also depends on nature exhibiting what we can best describe as a high aLgorithmic content. The theme running through this collection of papers is that of the interaction between descriptions, in the form of formal theories, and the algorithmic content of what is described, namely of the modeLs of those theories. This appears most explicitly here in a number of valuable, and substantial, contributions to what has until recently been known as 'recursive model theory' - an area in which researchers from the former Soviet Union (in particular Novosibirsk) have been pre-eminent. There are also articles concerned with the computability of aspects of familiar mathematical structures, and - a return to the sort of basic underlying questions considered by Alan Turing in the early days of the subject - an article giving a new perspective on computability in the real world. And, of course, there are also articles concerned with the classical theory of computability, including the first widely available survey of work on quasi-reducibility. The contributors, all internationally recognised experts in their fields, have been associated with the three-year INTAS-RFBR Research Project "Com putability and Models" (Project No. 972-139), and most have participated in one or more of the various international workshops (in Novosibirsk, Heidelberg and Almaty) and otherresearch activities of the network.

Book Computability Theory

Download or read book Computability Theory written by S. Barry Cooper and published by CRC Press. This book was released on 2017-09-06 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computability theory originated with the seminal work of Gödel, Church, Turing, Kleene and Post in the 1930s. This theory includes a wide spectrum of topics, such as the theory of reducibilities and their degree structures, computably enumerable sets and their automorphisms, and subrecursive hierarchy classifications. Recent work in computability theory has focused on Turing definability and promises to have far-reaching mathematical, scientific, and philosophical consequences. Written by a leading researcher, Computability Theory provides a concise, comprehensive, and authoritative introduction to contemporary computability theory, techniques, and results. The basic concepts and techniques of computability theory are placed in their historical, philosophical and logical context. This presentation is characterized by an unusual breadth of coverage and the inclusion of advanced topics not to be found elsewhere in the literature at this level. The book includes both the standard material for a first course in computability and more advanced looks at degree structures, forcing, priority methods, and determinacy. The final chapter explores a variety of computability applications to mathematics and science. Computability Theory is an invaluable text, reference, and guide to the direction of current research in the field. Nowhere else will you find the techniques and results of this beautiful and basic subject brought alive in such an approachable and lively way.

Book Theory and Applications of Models of Computation

Download or read book Theory and Applications of Models of Computation written by T-H. Hubert Chan and published by Springer. This book was released on 2013-04-15 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 10th International Conference on Theory and Applications of Models of Computation, TAMC 2013, held in Hong Kong, China, in May 2013. The 31 revised full papers presented were carefully reviewed and selected from 70 submissions. Bringing together a wide range of researchers with interests in computational theory and applications, the papers address the three main themes of the conference which were computability, complexity, and algorithms and present current research in these fields with aspects to theoretical computer science, algorithmic mathematics, and applications to the physical sciences.

Book What Can Be Computed

    Book Details:
  • Author : John MacCormick
  • Publisher : Princeton University Press
  • Release : 2018-05-01
  • ISBN : 0691170665
  • Pages : 404 pages

Download or read book What Can Be Computed written by John MacCormick and published by Princeton University Press. This book was released on 2018-05-01 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible and rigorous textbook for introducing undergraduates to computer science theory What Can Be Computed? is a uniquely accessible yet rigorous introduction to the most profound ideas at the heart of computer science. Crafted specifically for undergraduates who are studying the subject for the first time, and requiring minimal prerequisites, the book focuses on the essential fundamentals of computer science theory and features a practical approach that uses real computer programs (Python and Java) and encourages active experimentation. It is also ideal for self-study and reference. The book covers the standard topics in the theory of computation, including Turing machines and finite automata, universal computation, nondeterminism, Turing and Karp reductions, undecidability, time-complexity classes such as P and NP, and NP-completeness, including the Cook-Levin Theorem. But the book also provides a broader view of computer science and its historical development, with discussions of Turing's original 1936 computing machines, the connections between undecidability and Gödel's incompleteness theorem, and Karp's famous set of twenty-one NP-complete problems. Throughout, the book recasts traditional computer science concepts by considering how computer programs are used to solve real problems. Standard theorems are stated and proven with full mathematical rigor, but motivation and understanding are enhanced by considering concrete implementations. The book's examples and other content allow readers to view demonstrations of—and to experiment with—a wide selection of the topics it covers. The result is an ideal text for an introduction to the theory of computation. An accessible and rigorous introduction to the essential fundamentals of computer science theory, written specifically for undergraduates taking introduction to the theory of computation Features a practical, interactive approach using real computer programs (Python in the text, with forthcoming Java alternatives online) to enhance motivation and understanding Gives equal emphasis to computability and complexity Includes special topics that demonstrate the profound nature of key ideas in the theory of computation Lecture slides and Python programs are available at whatcanbecomputed.com