EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Compressive Imaging  Structure  Sampling  Learning

Download or read book Compressive Imaging Structure Sampling Learning written by Ben Adcock and published by Cambridge University Press. This book was released on 2021-09-16 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accurate, robust and fast image reconstruction is a critical task in many scientific, industrial and medical applications. Over the last decade, image reconstruction has been revolutionized by the rise of compressive imaging. It has fundamentally changed the way modern image reconstruction is performed. This in-depth treatment of the subject commences with a practical introduction to compressive imaging, supplemented with examples and downloadable code, intended for readers without extensive background in the subject. Next, it introduces core topics in compressive imaging – including compressed sensing, wavelets and optimization – in a concise yet rigorous way, before providing a detailed treatment of the mathematics of compressive imaging. The final part is devoted to recent trends in compressive imaging: deep learning and neural networks. With an eye to the next decade of imaging research, and using both empirical and mathematical insights, it examines the potential benefits and the pitfalls of these latest approaches.

Book Handbook of Mathematical Methods in Imaging

Download or read book Handbook of Mathematical Methods in Imaging written by Otmar Scherzer and published by Springer Science & Business Media. This book was released on 2010-11-23 with total page 1626 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.

Book A Mathematical Introduction to Compressive Sensing

Download or read book A Mathematical Introduction to Compressive Sensing written by Simon Foucart and published by Springer Science & Business Media. This book was released on 2013-08-13 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.

Book High Dimensional Optimization and Probability

Download or read book High Dimensional Optimization and Probability written by Ashkan Nikeghbali and published by Springer Nature. This book was released on 2022-08-04 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents extensive research devoted to a broad spectrum of mathematics with emphasis on interdisciplinary aspects of Optimization and Probability. Chapters also emphasize applications to Data Science, a timely field with a high impact in our modern society. The discussion presents modern, state-of-the-art, research results and advances in areas including non-convex optimization, decentralized distributed convex optimization, topics on surrogate-based reduced dimension global optimization in process systems engineering, the projection of a point onto a convex set, optimal sampling for learning sparse approximations in high dimensions, the split feasibility problem, higher order embeddings, codifferentials and quasidifferentials of the expectation of nonsmooth random integrands, adjoint circuit chains associated with a random walk, analysis of the trade-off between sample size and precision in truncated ordinary least squares, spatial deep learning, efficient location-based tracking for IoT devices using compressive sensing and machine learning techniques, and nonsmooth mathematical programs with vanishing constraints in Banach spaces. The book is a valuable source for graduate students as well as researchers working on Optimization, Probability and their various interconnections with a variety of other areas. Chapter 12 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Book Numerical Analysis meets Machine Learning

Download or read book Numerical Analysis meets Machine Learning written by and published by Elsevier. This book was released on 2024-06-13 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Analysis Meets Machine Learning series, highlights new advances in the field, with this new volume presenting interesting chapters. Each chapter is written by an international board of authors. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Numerical Analysis series - Updated release includes the latest information on the Numerical Analysis Meets Machine Learning

Book Sparse Polynomial Approximation of High Dimensional Functions

Download or read book Sparse Polynomial Approximation of High Dimensional Functions written by Ben Adcock and published by SIAM. This book was released on 2022-02-16 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over seventy years ago, Richard Bellman coined the term “the curse of dimensionality” to describe phenomena and computational challenges that arise in high dimensions. These challenges, in tandem with the ubiquity of high-dimensional functions in real-world applications, have led to a lengthy, focused research effort on high-dimensional approximation—that is, the development of methods for approximating functions of many variables accurately and efficiently from data. This book provides an in-depth treatment of one of the latest installments in this long and ongoing story: sparse polynomial approximation methods. These methods have emerged as useful tools for various high-dimensional approximation tasks arising in a range of applications in computational science and engineering. It begins with a comprehensive overview of best s-term polynomial approximation theory for holomorphic, high-dimensional functions, as well as a detailed survey of applications to parametric differential equations. It then describes methods for computing sparse polynomial approximations, focusing on least squares and compressed sensing techniques. Sparse Polynomial Approximation of High-Dimensional Functions presents the first comprehensive and unified treatment of polynomial approximation techniques that can mitigate the curse of dimensionality in high-dimensional approximation, including least squares and compressed sensing. It develops main concepts in a mathematically rigorous manner, with full proofs given wherever possible, and it contains many numerical examples, each accompanied by downloadable code. The authors provide an extensive bibliography of over 350 relevant references, with an additional annotated bibliography available on the book’s companion website (www.sparse-hd-book.com). This text is aimed at graduate students, postdoctoral fellows, and researchers in mathematics, computer science, and engineering who are interested in high-dimensional polynomial approximation techniques.

Book Compressed Sensing

Download or read book Compressed Sensing written by Yonina C. Eldar and published by Cambridge University Press. This book was released on 2012-05-17 with total page 557 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compressed sensing is an exciting, rapidly growing field, attracting considerable attention in electrical engineering, applied mathematics, statistics and computer science. This book provides the first detailed introduction to the subject, highlighting theoretical advances and a range of applications, as well as outlining numerous remaining research challenges. After a thorough review of the basic theory, many cutting-edge techniques are presented, including advanced signal modeling, sub-Nyquist sampling of analog signals, non-asymptotic analysis of random matrices, adaptive sensing, greedy algorithms and use of graphical models. All chapters are written by leading researchers in the field, and consistent style and notation are utilized throughout. Key background information and clear definitions make this an ideal resource for researchers, graduate students and practitioners wanting to join this exciting research area. It can also serve as a supplementary textbook for courses on computer vision, coding theory, signal processing, image processing and algorithms for efficient data processing.

Book Computer Vision     ECCV 2024

    Book Details:
  • Author : Aleš Leonardis
  • Publisher : Springer Nature
  • Release :
  • ISBN : 3031732294
  • Pages : 572 pages

Download or read book Computer Vision ECCV 2024 written by Aleš Leonardis and published by Springer Nature. This book was released on with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Mathematics of Signal Processing

Download or read book The Mathematics of Signal Processing written by Steven B. Damelin and published by Cambridge University Press. This book was released on 2012 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Develops mathematical and probabilistic tools needed to give rigorous derivations and applications of fundamental results in signal processing theory.

Book Compressive Sensing in Healthcare

Download or read book Compressive Sensing in Healthcare written by Mahdi Khosravy and published by Academic Press. This book was released on 2020-05-18 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compressive Sensing in Healthcare, part of the Advances in Ubiquitous Sensing Applications for Healthcare series gives a review on compressive sensing techniques in a practical way, also presenting deterministic compressive sensing techniques that can be used in the field. The focus of the book is on healthcare applications for this technology. It is intended for both the creators of this technology and the end users of these products. The content includes the use of EEG and ECG, plus hardware and software requirements for building projects. Body area networks and body sensor networks are explored. Provides a toolbox for compressive sensing in health, presenting both mathematical and coding information Presents an intuitive introduction to compressive sensing, including MATLAB tutorials Covers applications of compressive sensing in health care

Book Machine Learning for Medical Image Reconstruction

Download or read book Machine Learning for Medical Image Reconstruction written by Farah Deeba and published by Springer Nature. This book was released on 2020-10-21 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshop was held virtually. The 15 papers presented were carefully reviewed and selected from 18 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.

Book Magnetic Resonance Image Reconstruction

Download or read book Magnetic Resonance Image Reconstruction written by Mehmet Akcakaya and published by Academic Press. This book was released on 2022-11-04 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic Resonance Image Reconstruction: Theory, Methods and Applications presents the fundamental concepts of MR image reconstruction, including its formulation as an inverse problem, as well as the most common models and optimization methods for reconstructing MR images. The book discusses approaches for specific applications such as non-Cartesian imaging, under sampled reconstruction, motion correction, dynamic imaging and quantitative MRI. This unique resource is suitable for physicists, engineers, technologists and clinicians with an interest in medical image reconstruction and MRI. - Explains the underlying principles of MRI reconstruction, along with the latest research - Gives example codes for some of the methods presented - Includes updates on the latest developments, including compressed sensing, tensor-based reconstruction and machine learning based reconstruction

Book Compressed Sensing in Radar Signal Processing

Download or read book Compressed Sensing in Radar Signal Processing written by Antonio De Maio and published by Cambridge University Press. This book was released on 2019-10-17 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn about the most recent theoretical and practical advances in radar signal processing using tools and techniques from compressive sensing. Providing a broad perspective that fully demonstrates the impact of these tools, the accessible and tutorial-like chapters cover topics such as clutter rejection, CFAR detection, adaptive beamforming, random arrays for radar, space-time adaptive processing, and MIMO radar. Each chapter includes coverage of theoretical principles, a detailed review of current knowledge, and discussion of key applications, and also highlights the potential benefits of using compressed sensing algorithms. A unified notation and numerous cross-references between chapters make it easy to explore different topics side by side. Written by leading experts from both academia and industry, this is the ideal text for researchers, graduate students and industry professionals working in signal processing and radar.

Book Machine Learning for Tomographic Imaging

Download or read book Machine Learning for Tomographic Imaging written by Ge Wang and published by Programme: Iop Expanding Physi. This book was released on 2019-12-30 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning represents a paradigm shift in tomographic imaging, and image reconstruction is a new frontier of machine learning. This book will meet the needs of those who want to catch the wave of smart imaging. The book targets graduate students and researchers in the imaging community. Open network software, working datasets, and multimedia will be included. The first of its kind in the emerging field of deep reconstruction and deep imaging, Machine Learning for Tomographic Imaging presents the most essential elements, latest progresses and an in-depth perspective on this important topic.

Book Handbook of Sample Preparation for Scanning Electron Microscopy and X Ray Microanalysis

Download or read book Handbook of Sample Preparation for Scanning Electron Microscopy and X Ray Microanalysis written by Patrick Echlin and published by Springer Science & Business Media. This book was released on 2011-04-14 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scanning electr on microscopy (SEM) and x-ray microanalysis can produce magnified images and in situ chemical information from virtually any type of specimen. The two instruments generally operate in a high vacuum and a very dry environment in order to produce the high energy beam of electrons needed for imaging and analysis. With a few notable exceptions, most specimens destined for study in the SEM are poor conductors and composed of beam sensitive light elements containing variable amounts of water. In the SEM, the imaging system depends on the specimen being sufficiently electrically conductive to ensure that the bulk of the incoming electrons go to ground. The formation of the image depends on collecting the different signals that are scattered as a consequence of the high energy beam interacting with the sample. Backscattered electrons and secondary electrons are generated within the primary beam-sample interactive volume and are the two principal signals used to form images. The backscattered electron coefficient ( ? ) increases with increasing atomic number of the specimen, whereas the secondary electron coefficient ( ? ) is relatively insensitive to atomic number. This fundamental diff- ence in the two signals can have an important effect on the way samples may need to be prepared. The analytical system depends on collecting the x-ray photons that are generated within the sample as a consequence of interaction with the same high energy beam of primary electrons used to produce images.

Book Computer Vision     ECCV 2020

Download or read book Computer Vision ECCV 2020 written by Andrea Vedaldi and published by Springer Nature. This book was released on 2020-11-12 with total page 830 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.

Book Theoretical Foundations and Numerical Methods for Sparse Recovery

Download or read book Theoretical Foundations and Numerical Methods for Sparse Recovery written by Massimo Fornasier and published by Walter de Gruyter. This book was released on 2010-07-30 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present collection is the very first contribution of this type in the field of sparse recovery. Compressed sensing is one of the important facets of the broader concept presented in the book, which by now has made connections with other branches such as mathematical imaging, inverse problems, numerical analysis and simulation. The book consists of four lecture notes of courses given at the Summer School on "Theoretical Foundations and Numerical Methods for Sparse Recovery" held at the Johann Radon Institute for Computational and Applied Mathematics in Linz, Austria, in September 2009. This unique collection will be of value for a broad community and may serve as a textbook for graduate courses. From the contents: "Compressive Sensing and Structured Random Matrices" by Holger Rauhut "Numerical Methods for Sparse Recovery" by Massimo Fornasier "Sparse Recovery in Inverse Problems" by Ronny Ramlau and Gerd Teschke "An Introduction to Total Variation for Image Analysis" by Antonin Chambolle, Vicent Caselles, Daniel Cremers, Matteo Novaga and Thomas Pock