EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book An Introduction to Compressible Flow

Download or read book An Introduction to Compressible Flow written by Forrest E. Ames and published by CRC Press. This book was released on 2021-07-15 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Compressible Flow, Second Edition covers the material typical of a single-semester course in compressible flow. The book begins with a brief review of thermodynamics and control volume fluid dynamics, then proceeds to cover isentropic flow, normal shock waves, shock tubes, oblique shock waves, Prandtl-Meyer expansion fans, Fanno-line flow, Rayleigh-line flow, and conical shock waves. The book includes a chapter on linearized flow following chapters on oblique shocks and Prandtl-Meyer flows to appropriately ground students in this approximate method. It includes detailed appendices to support problem solutions and covers new oblique shock tables, which allow for quick and accurate solutions of flows with concave corners. The book is intended for senior undergraduate engineering students studying thermal-fluids and practicing engineers in the areas of aerospace or energy conversion. This book is also useful in providing supplemental coverage of compressible flow material in gas turbine and aerodynamics courses.

Book Fundamentals of Compressible Flow

Download or read book Fundamentals of Compressible Flow written by S. M. Yahya and published by . This book was released on 1994 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fundamentals of Compressible Flow

Download or read book Fundamentals of Compressible Flow written by S. M. Yahya and published by New Age International. This book was released on 2003 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Subject Of Compressible Flow Or Gas Dynamics Deals With The Thermo-Fluid Dynamic Problems Of Gases And Vapours. It Is Now An Important Part Of The Undergraduate And Postgraduate Curricula. Fundamentals Of Compressible Flow Covers This Subject In Fourteen Well Organised Chapters In A Lucid Style. A Large Mass Of Theoretical Material And Equations Has Been Supported By A Number Of Figures And Graphical Depictions. Author'S Sprawling Teaching Experience In This Subject And Allied Areas Is Reflected In The Clarity, And Systematic And Logical Presentation. Salient Features * Begins With Basic Definitions And Formulas. * Separate Chapters On Adiabatic Flow, Isentropic Flow And Rate Equations. * Li>Includes Basics Of The Atmosphere, And Measuring Techniques.Separate Sections On Wind Tunnels, Laser Techniques, Hot Wires And Flow Measurement. * Discusses Applications In Aircraft And Rocket Propulsion, Space Flights, And Pumping Of Natural Gas. * Contains Large Number Of Solved And Unsolved Problems.The Present Edition Has An Additional Chapter (14) On Miscellaneous Problems In Compressible Flow (Gas Dynamics). This Is Designed To Support The Tutorials, Practice Exercises And Examinations. Problems Have Been Specially Chosen For Students And Engineers In The Areas Of Aerospace, Chemical, Gas And Mechanical Engineering.

Book Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables

Download or read book Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables written by A. Majda and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conservation laws arise from the modeling of physical processes through the following three steps: 1) The appropriate physical balance laws are derived for m-phy- t cal quantities, ul""'~ with u = (ul' ... ,u ) and u(x,t) defined m for x = (xl""'~) E RN (N = 1,2, or 3), t > 0 and with the values m u(x,t) lying in an open subset, G, of R , the state space. The state space G arises because physical quantities such as the density or total energy should always be positive; thus the values of u are often con strained to an open set G. 2) The flux functions appearing in these balance laws are idealized through prescribed nonlinear functions, F.(u), mapping G into J j = 1, ..• ,N while source terms are defined by S(u,x,t) with S a given smooth function of these arguments with values in Rm. In parti- lar, the detailed microscopic effects of diffusion and dissipation are ignored. 3) A generalized version of the principle of virtual work is applied (see Antman [1]). The formal result of applying the three steps (1)-(3) is that the m physical quantities u define a weak solution of an m x m system of conservation laws, o I + N(Wt'u + r W ·F.(u) + W·S(u,x,t))dxdt (1.1) R xR j=l Xj J for all W E C~(RN x R+), W(x,t) E Rm.

Book Compressible Fluid Dynamics and Shock Waves

Download or read book Compressible Fluid Dynamics and Shock Waves written by Akihiro Sasoh and published by Springer Nature. This book was released on 2020-01-02 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers comprehensive coverage of compressible flow phenomena and their applications, and is intended for undergraduate/graduate students, practicing professionals, and researchers interested in the topic. Thanks to the clear explanations provided of a wide range of basic principles, the equations and formulas presented here can be understood with only a basic grasp of mathematics. The book particularly focuses on shock waves, offering a unique approach to the derivation of shock wave relations from conservation relations in fluids together with a contact surface, slip line or surface; in addition, the thrust of a rocket engine and that of an air-breathing engine are also formulated. Furthermore, the book covers important fundamentals of various aspects of physical fluid dynamics and engineering, including one-dimensional unsteady flows, and two-dimensional flows, in which oblique shock waves and Prandtl-Meyer expansion can be observed.

Book Mathematical Theory of Compressible Fluid Flow

Download or read book Mathematical Theory of Compressible Fluid Flow written by Richard von Mises and published by Courier Corporation. This book was released on 2013-02-21 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: A pioneer in the fields of statistics and probability theory, Richard von Mises (1883–1953) made notable advances in boundary-layer-flow theory and airfoil design. This text on compressible flow, unfinished upon his sudden death, was subsequently completed in accordance with his plans, and von Mises' first three chapters were augmented with a survey of the theory of steady plane flow. Suitable as a text for advanced undergraduate and graduate students — as well as a reference for professionals — Mathematical Theory of Compressible Fluid Flow examines the fundamentals of high-speed flows, with detailed considerations of general theorems, conservation equations, waves, shocks, and nonisentropic flows. In this, the final work of his distinguished career, von Mises summarizes his extensive knowledge of a central branch of fluid mechanics. Characteristically, he pays particular attention to the basics, both conceptual and mathematical. The novel concept of a specifying equation clarifies the role of thermodynamics in the mechanics of compressible fluids. The general theory of characteristics receives a remarkably complete and simple treatment, with detailed applications, and the theory of shocks as asymptotic phenomena appears within the context of rational mechanics.

Book Compressible Fluid Flow

Download or read book Compressible Fluid Flow written by P. H. Oosthuizen and published by . This book was released on 1997 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book One Dimensional Compressible Flow

Download or read book One Dimensional Compressible Flow written by H. Daneshyar and published by Elsevier. This book was released on 2013-10-22 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: One-Dimensional Compressible Flow explores the physical behavior of one-dimensional compressible flow. Various types of flow in one dimension are considered, including isentropic flow, flow through a convergent or a convergent-divergent duct with varying back pressure, flow with friction or heat transfer, and unsteady flow. This text consists of five chapters and begins with an overview of the main concepts from thermodynamics and fluid mechanics, with particular emphasis on the basic conservation equations for mass, momentum, and energy that are derived for time-dependent flow through a control volume. The chapters that follow provide a basis for understanding steady flow with area change, friction, or heat transfer. A method for solving unsteady flow problems is described in the final chapter, which also discusses the propagation of small disturbances and unsteady flow with finite changes in fluid properties. This book will be useful to senior students pursuing a degree course in mechanical engineering and to engineers in industry.

Book Compressibility  Turbulence and High Speed Flow

Download or read book Compressibility Turbulence and High Speed Flow written by Thomas B. Gatski and published by Academic Press. This book was released on 2013-03-05 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current trends. An introduction to current techniques in compressible turbulent flow analysis An approach that enables engineers to identify and solve complex compressible flow challenges Prediction methodologies, including the Reynolds-averaged Navier Stokes (RANS) method, scale filtered methods and direct numerical simulation (DNS) Current strategies focusing on compressible flow control

Book Large Eddy Simulation for Compressible Flows

Download or read book Large Eddy Simulation for Compressible Flows written by Eric Garnier and published by Springer Science & Business Media. This book was released on 2009-08-11 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses both the fundamentals and the practical industrial applications of Large Eddy Simulation (LES) in order to bridge the gap between LES research and the growing need to use it in engineering modeling.

Book Waves and Compressible Flow

Download or read book Waves and Compressible Flow written by Hilary Ockendon and published by Springer Science & Business Media. This book was released on 2006-05-17 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers compressible flow however the authors also show how wave phenomena in electromagnetism and solid mechanics can be treated using similar mathematical methods. It caters to the needs of the modern student by providing the tools necessary for a mathematical analysis of most kinds of waves liable to be encountered in modern science and technology. At the same time emphasis is laid on the physical background and modeling that requires these tools.

Book FUNDAMENTALS OF COMPRESSIBLE FLUID DYNAMICS

Download or read book FUNDAMENTALS OF COMPRESSIBLE FLUID DYNAMICS written by P. BALACHANDRAN and published by PHI Learning Pvt. Ltd.. This book was released on 2006-01-01 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compressible Fluid Dynamics (or Gas Dynamics) has a wide range of applications in Mechanical, Aeronautical and Chemical Engineering.It plays a significant role in the design and development of compressors, turbines, missiles, rockets and aircrafts. This comprehensive and systematically organized book gives a clear analysis of the fundamental principles of Compressible Fluid Dynamics. It discusses in rich detail such topics as isentropic, Fanno, Rayleigh, simple and generalised one-dimensional flows. Besides, it covers topics such as conservation laws for compressible flow, normal and oblique shock waves, and measurement in compressible flow. Finally, the book concludes with detailed discussions on propulsive devices. The text is amply illustrated with worked-out examples, tables and diagrams to enable the students to comprehend the subject with ease. Intended as a text for undergraduate students of Mechanical, Aeronautical and Chemical Engineering, the book would also be extremely useful for practising engineers.

Book Mathematical and Computational Methods for Compressible Flow

Download or read book Mathematical and Computational Methods for Compressible Flow written by Miloslav Feistauer and published by Oxford University Press, USA. This book was released on 2003 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with mathematical and numerical methods for compressible flow. It aims to provide the reader with a sufficiently detailed and extensive, mathematically precise, but comprehensible guide, through a wide spectrum of mathematical and computational methods used in Computational Fluid Dynamics (CFD) for the numerical simulation of compressible flow. Up-to-date techniques applied in the numerical solution of inviscid as well as viscous compressible flow on unstructured meshes are explained, thus allowing the simulation of complex three-dimensional technically relevant problems. Among some of the methods addressed are finite volume methods using approximate Riemann solvers, finite element techniques, such as the streamline diffusion and the discontinuous Galerkin methods, and combined finite volume - finite element schemes. The book gives a complex insight into the numerics of compressible flow, covering the development of numerical schemes and their theoretical mathematical analysis, their verification on test problems and use in solving practical engineering problems. The book will be helpful to specialists coming into contact with CFD - pure and applied mathematicians, aerodynamists, engineers, physicists and natural scientists. It will also be suitable for advanced undergraduate, graduate and postgraduate students of mathematics and technical sciences.

Book Elements of Numerical Methods for Compressible Flows

Download or read book Elements of Numerical Methods for Compressible Flows written by Doyle Knight and published by Cambridge University Press. This book was released on 2006-08-14 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher description

Book Numerical Methods for Unsteady Compressible Flow Problems

Download or read book Numerical Methods for Unsteady Compressible Flow Problems written by Philipp Birken and published by CRC Press. This book was released on 2021-07-04 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods for Unsteady Compressible Flow Problems is written to give both mathematicians and engineers an overview of the state of the art in the field, as well as of new developments. The focus is on methods for the compressible Navier-Stokes equations, the solutions of which can exhibit shocks, boundary layers and turbulence. The idea of the text is to explain the important ideas to the reader, while giving enough detail and pointers to literature to facilitate implementation of methods and application of concepts. The book covers high order methods in space, such as Discontinuous Galerkin methods, and high order methods in time, in particular implicit ones. A large part of the text is reserved to discuss iterative methods for the arising large nonlinear and linear equation systems. Ample space is given to both state-of-the-art multigrid and preconditioned Newton-Krylov schemes. Features Applications to aerospace, high-speed vehicles, heat transfer, and more besides Suitable as a textbook for graduate-level courses in CFD, or as a reference for practitioners in the field

Book Gas Tables for Compressible Flow Calculations

Download or read book Gas Tables for Compressible Flow Calculations written by S. M. Yahya and published by New Age International. This book was released on 2006 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of compressible flow or gas dynamics deals with the thermo-fluid dynamic problems of gases and vapours. It is now an important part of the undergraduate and postgraduate curricula. Fundamentals of Compressible Flow covers this subject in fourteen well organised chapters in a lucid style. A large mass of theoretical material and equations has been supported by a number of figures and graphical depictions. Author's sprawling teaching experience in this subject and allied areas is reflected in the clarity, and systematic and logical presentation.

Book Numerical Computation of Compressible and Viscous Flow

Download or read book Numerical Computation of Compressible and Viscous Flow written by Robert William MacCormack and published by AIAA Education. This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for those who want to calculate compressible and viscous flow past aerodynamic bodies, this book allows you to get started in programming for solving initial value problems and to understand numerical accuracy and stability, matrix algebra, finite volume formulations, and the use of flux split algorithms for solving the Euler equations.