Download or read book Complex Analytic Cycles I written by Daniel Barlet and published by Springer Nature. This book was released on 2020-01-03 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book consists of a presentation from scratch of cycle space methodology in complex geometry. Applications in various contexts are given. A significant portion of the book is devoted to material which is important in the general area of complex analysis. In this regard, a geometric approach is used to obtain fundamental results such as the local parameterization theorem, Lelong' s Theorem and Remmert's direct image theorem. Methods involving cycle spaces have been used in complex geometry for some forty years. The purpose of the book is to systematically explain these methods in a way which is accessible to graduate students in mathematics as well as to research mathematicians. After the background material which is presented in the initial chapters, families of cycles are treated in the last most important part of the book. Their topological aspects are developed in a systematic way and some basic, important applications of analytic families of cycles are given. The construction of the cycle space as a complex space, along with numerous important applications, is given in the second volume. The present book is a translation of the French version that was published in 2014 by the French Mathematical Society.
Download or read book Complex Analytic Cycles written by Daniel Barlet and published by . This book was released on 2019 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book consists of a presentation from scratch of cycle space methodology in complex geometry. Applications in various contexts are given. A significant portion of the book is devoted to material which is important in the general area of complex analysis. In this regard, a geometric approach is used to obtain fundamental results such as the local parameterization theorem, Lelong' s Theorem and Remmert's direct image theorem. Methods involving cycle spaces have been used in complex geometry for some forty years. The purpose of the book is to systematically explain these methods in a way which is accessible to graduate students in mathematics as well as to research mathematicians. After the background material which is presented in the initial chapters, families of cycles are treated in the last most important part of the book. Their topological aspects are developed in a systematic way and some basic, important applications of analytic families of cycles are given. The construction of the cycle space as a complex space, along with numerous important applications, is given in the second volume. The present book is a translation of the French version that was published in 2014 by the French Mathematical Society.
Download or read book Michael Atiyah Collected Works written by Michael Atiyah and published by Oxford University Press. This book was released on 1988-04-28 with total page 876 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the greatest mathematicians in the world, Michael Atiyah has earned numerous honors, including a Fields Medal, the mathematical equivalent of the Nobel Prize. While the focus of his work has been in the areas of algebraic geometry and topology, he has also participated in research with theoretical physicists. For the first time, these volumes bring together Atiyah's collected papers--both monographs and collaborative works-- including those dealing with mathematical education and current topics of research such as K-theory and gauge theory. The volumes are organized thematically. They will be of great interest to research mathematicians, theoretical physicists, and graduate students in these areas.
Download or read book The Collected Papers of Wei Liang Chow written by Shiing-Shen Chern and published by World Scientific. This book was released on 2002 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This invaluable book contains the collected papers of Prof Wei-Liang Chow, an original and versatile mathematician of the 20th Century. Prof Chow''s name has become a household word in mathematics because of the Chow ring, Chow coordinates, and Chow''s theorem on analytic sets in projective spaces. The Chow ring has many advantages and is widely used in intersection theory of algebraic geometry. Chow coordinates have been a very versatile tool in many aspects of algebraic geometry. Chow''s theorem OCo that a compact analytic variety in a projective space is algebraic OCo is justly famous; it shows the close analogy between algebraic geometry and algebraic number theory.About Professor Wei-Liang ChowThe long and distinguished career of Prof Wei-Liang Chow (1911OCo95) as a mathematician began in China with professorships at the National Central University in Nanking (1936OCo37) and the National Tung-Chi University in Shanghai (1946OCo47), and ultimately led him to the United States, where he joined the mathematics faculty of Johns Hopkins University in Baltimore, Maryland, first as an associate professor from 1948 to 1950, then as a full professor from 1950 until his retirement in 1977.In addition to serving as chairman of the mathematics department at Johns Hopkins from 1955 to 1965, he was Editor-in-Chief of the American Journal of Mathematics from 1953 to 1977."
Download or read book Complex Geometry written by Daniel Huybrechts and published by Springer Science & Business Media. This book was released on 2005 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)
Download or read book Complex Analytic Geometry From The Localization Viewpoint written by Tatsuo Suwa and published by World Scientific. This book was released on 2024-02-21 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex Analytic Geometry is a subject that could be termed, in short, as the study of the sets of common zeros of complex analytic functions. It has a long history and is closely related to many other fields of Mathematics and Sciences, where numerous applications have been found, including a recent one in the Sato hyperfunction theory.This book is concerned with, among others, local invariants that arise naturally in Complex Analytic Geometry and their relations with global invariants of the manifold or variety. The idea is to look at them as residues associated with the localization of some characteristic classes. Two approaches are taken for this — topological and differential geometric — and the combination of the two brings out further fruitful results. For this, on one hand, we present detailed description of the Alexander duality in combinatorial topology. On the other hand, we give a thorough presentation of the Čech-de Rham cohomology and integration theory on it. This viewpoint provides us with the way for clearer and more precise presentations of the central concepts as well as fundamental and important results that have been treated only globally so far. It also brings new perspectives into the subject and leads to further results and applications.The book starts off with basic material and continues by introducing characteristic classes via both the obstruction theory and the Chern-Weil theory, explaining the idea of localization of characteristic classes and presenting the aforementioned invariants and relations in a unified way from this perspective. Various related topics are also discussed. The expositions are carried out in a self-containing manner and includes recent developments. The profound consequences of this subject will make the book useful for students and researchers in fields as diverse as Algebraic Geometry, Complex Analytic Geometry, Differential Geometry, Topology, Singularity Theory, Complex Dynamical Systems, Algebraic Analysis and Mathematical Physics.
Download or read book Numerical Control over Complex Analytic Singularities written by David B. Massey and published by American Mathematical Soc.. This book was released on 2003 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generalizes the Le cycles and numbers to the case of hyper surfaces inside arbitrary analytic spaces. This book defines the Le-Vogel cycles and numbers, and prove that the Le-Vogel numbers control Thom's $a_f$ condition. It describes the relationship between the Euler characteristic of the Milnor fibre and the Le-Vogel numbers.
Download or read book Analytic Continuation and q Convexity written by Takeo Ohsawa and published by Springer Nature. This book was released on 2022-06-02 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this book is on the further development of the classical achievements in analysis of several complex variables, the analytic continuation and the analytic structure of sets, to settings in which the q-pseudoconvexity in the sense of Rothstein and the q-convexity in the sense of Grauert play a crucial role. After giving a brief survey of notions of generalized convexity and their most important results, the authors present recent statements on analytic continuation related to them. Rothstein (1955) first introduced q-pseudoconvexity using generalized Hartogs figures. Słodkowski (1986) defined q-pseudoconvex sets by means of the existence of exhaustion functions which are q-plurisubharmonic in the sense of Hunt and Murray (1978). Examples of q-pseudoconvex sets appear as complements of analytic sets. Here, the relation of the analytic structure of graphs of continuous surfaces whose complements are q-pseudoconvex is investigated. As an outcome, the authors generalize results by Hartogs (1909), Shcherbina (1993), and Chirka (2001) on the existence of foliations of pseudoconcave continuous real hypersurfaces by smooth complex ones. A similar generalization is obtained by a completely different approach using L2-methods in the setting of q-convex spaces. The notion of q-convexity was developed by Rothstein (1955) and Grauert (1959) and extended to q-convex spaces by Andreotti and Grauert (1962). Andreotti–Grauert's finiteness theorem was applied by Andreotti and Norguet (1966–1971) to extend Grauert's solution of the Levi problem to q-convex spaces. A consequence is that the sets of (q-1)-cycles of q-convex domains with smooth boundaries in projective algebraic manifolds, which are equipped with complex structures as open subsets of Chow varieties, are in fact holomorphically convex. Complements of analytic curves are studied, and the relation of q-convexity and cycle spaces is explained. Finally, results for q-convex domains in projective spaces are shown and the q-convexity in analytic families is investigated.
Download or read book Hodge Theory and Complex Algebraic Geometry I written by Claire Voisin and published by Cambridge University Press. This book was released on 2007-12-20 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a modern introduction to Kaehlerian geometry and Hodge structure. Coverage begins with variables, complex manifolds, holomorphic vector bundles, sheaves and cohomology theory (with the latter being treated in a more theoretical way than is usual in geometry). The book culminates with the Hodge decomposition theorem. In between, the author proves the Kaehler identities, which leads to the hard Lefschetz theorem and the Hodge index theorem. The second part of the book investigates the meaning of these results in several directions.
Download or read book Le Cycles and Hypersurface Singularities written by David Massey and published by Springer. This book was released on 2006-11-14 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes and gives applications of an important new tool in the study of complex analytic hypersurface singularities: the Lê cycles of the hypersurface. The Lê cycles and their multiplicities - the Lê numbers - provide effectively calculable data which generalizes the Milnor number of an isolated singularity to the case of singularities of arbitrary dimension. The Lê numbers control many topological and geometric properties of such non-isolated hypersurface singularities. This book is intended for graduate students and researchers interested in complex analytic singularities.
Download or read book Multidimensional Residue Theory and Applications written by Alekos Vidras and published by American Mathematical Society. This book was released on 2023-10-18 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Residue theory is an active area of complex analysis with connections and applications to fields as diverse as partial differential and integral equations, computer algebra, arithmetic or diophantine geometry, and mathematical physics. Multidimensional Residue Theory and Applications defines and studies multidimensional residues via analytic continuation for holomorphic bundle-valued current maps. This point of view offers versatility and flexibility to the tools and constructions proposed, allowing these residues to be defined and studied outside the classical case of complete intersection. The book goes on to show how these residues are algebraic in nature, and how they relate and apply to a wide range of situations, most notably to membership problems, such as the Briançon–Skoda theorem and Hilbert's Nullstellensatz, to arithmetic intersection theory and to tropical geometry. This book will supersede the existing literature in this area, which dates back more than three decades. It will be appreciated by mathematicians and graduate students in multivariate complex analysis. But thanks to the gentle treatment of the one-dimensional case in Chapter 1 and the rich background material in the appendices, it may also be read by specialists in arithmetic, diophantine, or tropical geometry, as well as in mathematical physics or computer algebra.
Download or read book Iterated Integrals And Cycles On Algebraic Manifolds written by Bruno Harris and published by World Scientific. This book was released on 2004-03-15 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: This subject has been of great interest both to topologists and to number theorists. The first part of this book describes some of the work of Kuo-Tsai Chen on iterated integrals and the fundamental group of a manifold. The author attempts to make his exposition accessible to beginning graduate students. He then proceeds to apply Chen's constructions to algebraic geometry, showing how this leads to some results on algebraic cycles and the Abel-Jacobi homomorphism. Finally, he presents a more general point of view relating Chen's integrals to a generalization of the concept of linking numbers, and ends up with a new invariant of homology classes in a projective algebraic manifold. The book is based on a course given by the author at the Nankai Institute of Mathematics in the fall of 2001.
Download or read book Principles of Locally Conformally K hler Geometry written by Liviu Ornea and published by Springer Nature. This book was released on 2024 with total page 729 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph introduces readers to locally conformally Kähler (LCK) geometry and provides an extensive overview of the most current results. A rapidly developing area in complex geometry dealing with non-Kähler manifolds, LCK geometry has strong links to many other areas of mathematics, including algebraic geometry, topology, and complex analysis. The authors emphasize these connections to create a unified and rigorous treatment of the subject suitable for both students and researchers. Part I builds the necessary foundations for those approaching LCK geometry for the first time with full, mostly self-contained proofs and also covers material often omitted from textbooks, such as contact and Sasakian geometry, orbifolds, Ehresmann connections, and foliation theory. More advanced topics are then treated in Part II, including non-Kähler elliptic surfaces, cohomology of holomorphic vector bundles on Hopf manifolds, Kuranishi and Teichmüller spaces for LCK manifolds with potential, and harmonic forms on Sasakian and Vaisman manifolds. Each chapter in Parts I and II begins with motivation and historic context for the topics explored and includes numerous exercises for further exploration of important topics. Part III surveys the current research on LCK geometry, describing advances on topics such as automorphism groups on LCK manifolds, twisted Hamiltonian actions and LCK reduction, Einstein-Weyl manifolds and the Futaki invariant, and LCK geometry on nilmanifolds and on solvmanifolds. New proofs of many results are given using the methods developed earlier in the text. The text then concludes with a chapter that gathers over 100 open problems, with context and remarks provided where possible, to inspire future research. .
Download or read book Handbook of Geometry and Topology of Singularities III written by José Luis Cisneros-Molina and published by Springer Nature. This book was released on 2022-06-06 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the third volume of the Handbook of Geometry and Topology of Singularities, a series which aims to provide an accessible account of the state of the art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of ten chapters which provide an in-depth and reader-friendly survey of various important aspects of singularity theory. Some of these complement topics previously explored in volumes I and II, such as, for instance, Zariski’s equisingularity, the interplay between isolated complex surface singularities and 3-manifold theory, stratified Morse theory, constructible sheaves, the topology of the non-critical levels of holomorphic functions, and intersection cohomology. Other chapters bring in new subjects, such as the Thom–Mather theory for maps, characteristic classes for singular varieties, mixed Hodge structures, residues in complex analytic varieties, nearby and vanishing cycles, and more. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject, and in other subjects. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
Download or read book Handbook of Geometry and Topology of Singularities I written by José Luis Cisneros Molina and published by Springer Nature. This book was released on 2020-10-24 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of ten articles which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject. This is the first volume in a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
Download or read book Handbook of Geometry and Topology of Singularities II written by José Luis Cisneros-Molina and published by Springer Nature. This book was released on 2021-11-01 with total page 581 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second volume of the Handbook of the Geometry and Topology of Singularities, a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of ten chapters which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory and related topics. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject, and in other subjects. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
Download or read book Bifurcations of Planar Vector Fields and Hilbert s Sixteenth Problem written by Robert Roussarie and published by Springer Science & Business Media. This book was released on 2013-11-26 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a coherent, exhaustive and progressive way, this book presents the tools for studying local bifurcations of limit cycles in families of planar vector fields. A systematic introduction is given to such methods as division of an analytic family of functions in its ideal of coefficients, and asymptotic expansion of non-differentiable return maps and desingularisation. The exposition moves from classical analytic geometric methods applied to regular limit periodic sets to more recent tools for singular limit sets. The methods can be applied to theoretical problems such as Hilbert's 16th problem, but also for the purpose of establishing bifurcation diagrams of specific families as well as explicit computations. - - - The book as a whole is a well-balanced exposition that can be recommended to all those who want to gain a thorough understanding and proficiency in the recently developed methods. The book, reflecting the current state of the art, can also be used for teaching special courses. (Mathematical Reviews)