EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Neural Network Methods for Natural Language Processing

Download or read book Neural Network Methods for Natural Language Processing written by Yoav Goldberg and published by Springer Nature. This book was released on 2022-06-01 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks are a family of powerful machine learning models. This book focuses on the application of neural network models to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries. The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.

Book Natural Language Processing With Python

Download or read book Natural Language Processing With Python written by Frank Millstein and published by Frank Millstein. This book was released on 2020-07-06 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural Language Processing With Python This book is a perfect beginner's guide to natural language processing. It is offering an easy to understand guide to implementing NLP techniques using Python. Natural language processing has been around for more than fifty years, but just recently with greater amounts of data present and better computational powers, it has gained a greater popularity. Given the importance of data, there is no wonder why natural language processing is on the rise. If you are interested in learning more, this book will serve as your best companion on this journey introducing you to this challenging, yet extremely engaging world of automatic manipulation of our human language. It covers all the basics you need to know before you dive deeper into NLP and solving more complex NLP tasks in Python. Here Is a Preview of What You’ll Learn Here… The main challenges of natural language processing The history of natural language processing How natural langauge processing actually works The main natural language processing applications Text preprocessing and noise removal Feature engineering and syntactic parsing Part of speech tagging and named entity extraction Topic modeling and word embedding Text classification problems Working with text data using NLTK Text summarization and sentiment analysis And much, much more... Get this book NOW and learn more about Natural Language Processing With Python!

Book Particle Swarm Optimization

Download or read book Particle Swarm Optimization written by Maurice Clerc and published by John Wiley & Sons. This book was released on 2010-01-05 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book devoted entirely to Particle Swarm Optimization (PSO), which is a non-specific algorithm, similar to evolutionary algorithms, such as taboo search and ant colonies. Since its original development in 1995, PSO has mainly been applied to continuous-discrete heterogeneous strongly non-linear numerical optimization and it is thus used almost everywhere in the world. Its convergence rate also makes it a preferred tool in dynamic optimization.

Book Proceedings of the 7th International Conference on Emerging Databases

Download or read book Proceedings of the 7th International Conference on Emerging Databases written by Wookey Lee and published by Springer. This book was released on 2017-10-13 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume presents selected papers from the 7th International Conference on Emerging Databases: Technologies, Applications, and Theory (EDB 2017), which was held in Busan, Korea from 7 to 9 August, 2017. This conference series was launched by the Korean Institute of Information Scientists and Engineers (KIISE) Database Society of Korea as an annual forum for exploring novel technologies, applications, and research advances in the field of emerging databases. This forum has evolved into the premier international venue for researchers and practitioners to discuss current research issues, challenges, new technologies, and solutions.

Book Data Science for Economics and Finance

Download or read book Data Science for Economics and Finance written by Sergio Consoli and published by Springer Nature. This book was released on 2021 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.

Book Deep Learning Based Approaches for Sentiment Analysis

Download or read book Deep Learning Based Approaches for Sentiment Analysis written by Basant Agarwal and published by Springer Nature. This book was released on 2020-01-24 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years. The book presents a collection of state-of-the-art approaches, focusing on the best-performing, cutting-edge solutions for the most common and difficult challenges faced in sentiment analysis research. Providing detailed explanations of the methodologies, the book is a valuable resource for researchers as well as newcomers to the field.

Book Disinformation in Open Online Media

Download or read book Disinformation in Open Online Media written by Max van Duijn and published by Springer Nature. This book was released on 2020-10-20 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chapters “Identifying Political Sentiments on YouTube: A Systematic Comparison regarding the Accuracy of Recurrent Neural Network and Machine Learning Models”, “Do Online Trolling Strategies Differ in Political and Interest Forums: Early Results” and “Students Assessing Digital News and Misinformation” are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Book Challenges and Applications of Data Analytics in Social Perspectives

Download or read book Challenges and Applications of Data Analytics in Social Perspectives written by Sathiyamoorthi, V. and published by IGI Global. This book was released on 2020-12-04 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: With exponentially increasing amounts of data accumulating in real-time, there is no reason why one should not turn data into a competitive advantage. While machine learning, driven by advancements in artificial intelligence, has made great strides, it has not been able to surpass a number of challenges that still prevail in the way of better success. Such limitations as the lack of better methods, deeper understanding of problems, and advanced tools are hindering progress. Challenges and Applications of Data Analytics in Social Perspectives provides innovative insights into the prevailing challenges in data analytics and its application on social media and focuses on various machine learning and deep learning techniques in improving practice and research. The content within this publication examines topics that include collaborative filtering, data visualization, and edge computing. It provides research ideal for data scientists, data analysts, IT specialists, website designers, e-commerce professionals, government officials, software engineers, social media analysts, industry professionals, academicians, researchers, and students.

Book Mining Data for Financial Applications

Download or read book Mining Data for Financial Applications written by Valerio Bitetta and published by Springer Nature. This book was released on 2021-01-14 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes revised selected papers from the 5th Workshop on Mining Data for Financial Applications, MIDAS 2020, held in conjunction with ECML PKDD 2020, in Ghent, Belgium, in September 2020.* The 8 full and 3 short papers presented in this volume were carefully reviewed and selected from 15 submissions. They deal with challenges, potentialities, and applications of leveraging data-mining tasks regarding problems in the financial domain. *The workshop was held virtually due to the COVID-19 pandemic. “Information Extraction from the GDELT Database to Analyse EU Sovereign Bond Markets” and “Exploring the Predictive Power of News and Neural Machine Learning Models for Economic Forecasting” are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Book How can I get started Investing in the Stock Market

Download or read book How can I get started Investing in the Stock Market written by Lokesh Badolia and published by Educreation Publishing. This book was released on 2016-10-27 with total page 63 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is well-researched by the author, in which he has shared the experience and knowledge of some very much experienced and renowned entities from stock market. We want that everybody should have the knowledge regarding the different aspects of stock market, which would encourage people to invest and earn without any fear. This book is just a step forward toward the knowledge of market.

Book Artificial Neural Network Modelling

Download or read book Artificial Neural Network Modelling written by Subana Shanmuganathan and published by Springer. This book was released on 2016-02-03 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling.

Book Machine Learning and Metaheuristics Algorithms  and Applications

Download or read book Machine Learning and Metaheuristics Algorithms and Applications written by Sabu M. Thampi and published by Springer Nature. This book was released on 2021-02-05 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Second Symposium on Machine Learning and Metaheuristics Algorithms, and Applications, SoMMA 2020, held in Chennai, India, in October 2020. Due to the COVID-19 pandemic the conference was held online. The 12 full papers and 7 short papers presented in this volume were thoroughly reviewed and selected from 40 qualified submissions. The papers cover such topics as machine learning, artificial intelligence, Internet of Things, modeling and simulation, disctibuted computing methodologies, computer graphics, etc.

Book Powering the Digital Economy  Opportunities and Risks of Artificial Intelligence in Finance

Download or read book Powering the Digital Economy Opportunities and Risks of Artificial Intelligence in Finance written by El Bachir Boukherouaa and published by International Monetary Fund. This book was released on 2021-10-22 with total page 35 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.

Book Computing and Data Science

Download or read book Computing and Data Science written by Weijia Cao and published by Springer Nature. This book was released on 2022-01-12 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume constitutes selected papers presented at the Third International Conference on Computing and Data Science, CONF-CDS 2021, held online in August 2021. The 22 full papers 9 short papers presented in this volume were thoroughly reviewed and selected from the 85 qualified submissions. They are organized in topical sections on advances in deep learning; algorithms in machine learning and statistics; advances in natural language processing.

Book Reinforcement Learning  second edition

Download or read book Reinforcement Learning second edition written by Richard S. Sutton and published by MIT Press. This book was released on 2018-11-13 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.

Book Synthetic Data for Deep Learning

Download or read book Synthetic Data for Deep Learning written by Sergey I. Nikolenko and published by Springer Nature. This book was released on 2021-06-26 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book on synthetic data for deep learning, and its breadth of coverage may render this book as the default reference on synthetic data for years to come. The book can also serve as an introduction to several other important subfields of machine learning that are seldom touched upon in other books. Machine learning as a discipline would not be possible without the inner workings of optimization at hand. The book includes the necessary sinews of optimization though the crux of the discussion centers on the increasingly popular tool for training deep learning models, namely synthetic data. It is expected that the field of synthetic data will undergo exponential growth in the near future. This book serves as a comprehensive survey of the field. In the simplest case, synthetic data refers to computer-generated graphics used to train computer vision models. There are many more facets of synthetic data to consider. In the section on basic computer vision, the book discusses fundamental computer vision problems, both low-level (e.g., optical flow estimation) and high-level (e.g., object detection and semantic segmentation), synthetic environments and datasets for outdoor and urban scenes (autonomous driving), indoor scenes (indoor navigation), aerial navigation, and simulation environments for robotics. Additionally, it touches upon applications of synthetic data outside computer vision (in neural programming, bioinformatics, NLP, and more). It also surveys the work on improving synthetic data development and alternative ways to produce it such as GANs. The book introduces and reviews several different approaches to synthetic data in various domains of machine learning, most notably the following fields: domain adaptation for making synthetic data more realistic and/or adapting the models to be trained on synthetic data and differential privacy for generating synthetic data with privacy guarantees. This discussion is accompanied by an introduction into generative adversarial networks (GAN) and an introduction to differential privacy.

Book Emerging Trends in Expert Applications and Security

Download or read book Emerging Trends in Expert Applications and Security written by Vijay Singh Rathore and published by Springer. This book was released on 2018-11-19 with total page 723 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book covers current developments in the field of expert applications and security, which employ advances of next-generation communication and computational technology to shape real-world applications. It gathers selected research papers presented at the ICETEAS 2018 conference, which was held at Jaipur Engineering College and Research Centre, Jaipur, India, on February 17–18, 2018. Key topics covered include expert applications and artificial intelligence; information and application security; advanced computing; multimedia applications in forensics, security and intelligence; and advances in web technologies: implementation and security issues.