EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Comparison of Different Experimental and Analytical Measures of the Thermal Annealing Response of Neutron Irradiated RPV Steels

Download or read book Comparison of Different Experimental and Analytical Measures of the Thermal Annealing Response of Neutron Irradiated RPV Steels written by SK. Iskander and published by . This book was released on 1999 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: The thermal annealing response of several materials as indicated by Charpy transition temperature (TT) and upper-shelf energy (USE), crack initiation toughness, KJc, predictive models, and automated-ball indentation (ABI) testing are compared. The materials investigated are representative reactor pressure vessel (RPV) steels (several welds and a plate) that were irradiated for other tasks of the Heavy-Section Steel Irradiation (HSSI) Program and are relatively well characterized in the unirradiated and irradiated conditions. They have been annealed at two temperatures, 343 and 454°C (650 and 850°F) for varying lengths of time. The correlation of the Charpy response and the fracture toughness, ABI, and the response predicted by the annealing model of Eason et al. for these conditions and materials appears to be reasonable. The USE after annealing at the temperature of 454°C appears to recover at a faster rate than the TT, and even "over-recovers" (i.e., the recovered USE exceeds that of the unirradiated material).

Book Comparison of Different Experimental and Analytical Measures of the Thermal Annealing Response of Neutron irradiated RPV Steels

Download or read book Comparison of Different Experimental and Analytical Measures of the Thermal Annealing Response of Neutron irradiated RPV Steels written by and published by . This book was released on 1997 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt: The thermal annealing response of several materials as indicated by Charpy transition temperature (TT) and upper-shelf energy (USE), crack initiation toughness, K{sub Jc}, predictive models, and automated-ball indentation (ABI) testing are compared. The materials investigated are representative reactor pressure vessel (RPV) steels (several welds and a plate) that were irradiated for other tasks of the Heavy-Section Steel Irradiation (HSSI) Program and are relatively well characterized in the unirradiated and irradiated conditions. They have been annealed at two temperatures, 343 and 454 C (650 and 850 F) for varying lengths of time. The correlation of the Charpy response and the fracture toughness, ABI, and the response predicted by the annealing model of Eason et al. for these conditions and materials appears to be reasonable. The USE after annealing at the temperature of 454 C appears to recover at a faster rate than the TT, and even over-recovers (i.e., the recovered USE exceeds that of the unirradiated material).

Book Response of Neutron irradiated RPV Steels to Thermal Annealing

Download or read book Response of Neutron irradiated RPV Steels to Thermal Annealing written by and published by . This book was released on 1997 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the fracture toughness properties that have been degraded by neutron irradiation. This paper summarizes experimental results of work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response of several irradiated RPV steels.

Book Effects of Radiation on Materials

Download or read book Effects of Radiation on Materials written by R. K. Nanstad and published by ASTM International. This book was released on 1999 with total page 1135 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Effects of Radiation on Materials

Download or read book Effects of Radiation on Materials written by Stan T. Rosinski and published by ASTM International. This book was released on 2001 with total page 879 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Structural Alloys for Nuclear Energy Applications

Download or read book Structural Alloys for Nuclear Energy Applications written by Robert Odette and published by Newnes. This book was released on 2019-08-15 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-performance alloys that can withstand operation in hazardous nuclear environments are critical to presentday in-service reactor support and maintenance and are foundational for reactor concepts of the future. With commercial nuclear energy vendors and operators facing the retirement of staff during the coming decades, much of the scholarly knowledge of nuclear materials pursuant to appropriate, impactful, and safe usage is at risk. Led by the multi-award winning editorial team of G. Robert Odette (UCSB) and Steven J. Zinkle (UTK/ORNL) and with contributions from leaders of each alloy discipline, Structural Alloys for Nuclear Energy Applications aids the next generation of researchers and industry staff developing and maintaining steels, nickel-base alloys, zirconium alloys, and other structural alloys in nuclear energy applications. This authoritative reference is a critical acquisition for institutions and individuals seeking state-of-the-art knowledge aided by the editors' unique personal insight from decades of frontline research, engineering and management. - Focuses on in-service irradiation, thermal, mechanical, and chemical performance capabilities. - Covers the use of steels and other structural alloys in current fission technology, leading edge Generation-IV fission reactors, and future fusion power reactors. - Provides a critical and comprehensive review of the state-of-the-art experimental knowledge base of reactor materials, for applications ranging from engineering safety and lifetime assessments to supporting the development of advanced computational models.

Book Ageing Studies and Lifetime Extension of Materials

Download or read book Ageing Studies and Lifetime Extension of Materials written by Les Mallinson and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 659 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first International Conference on Ageing Studies and Lifetime Extension of Materials was held on th July 12-14 , 1999 at St. Catherine's College, Oxford, United Kingdom. Over 230 delegates attended during the three days and heard nearly ninety papers, together with over thirty poster presentations. Sixteen of these papers were keynotes from invited speakers eminent in their field of research. The proceedings were organised into six separate sessions: observation and understanding of real-time and accelerated ageing; experimental techniques; modelling and theoretical studies; lifetime prediction and validation; lifetime extension; and material design for ageing. In doing this, it was hoped to cover most issues of scientific concern inthefield ofmaterials ageing. One important aspect was that the conference did not concentrateon any particular group or type ofmaterial; rather the aim was to attract contributions from workers engaged in ageing studies with as wide a range of materials as possible. In this way, it was hoped that delegates could interactwith and learnfrom those whom they perhapswould not normally come across and that metallurgists could learn from polymer scientists, ceramicists could talk to modellers, and so on, in this important field. A read through the diverse papers contained within these proceedings will confirm that this aim was happily satisfied. Why hold such a meeting? In the modem world, engineered systems are expected to last longer.

Book Effects of Radiation on Materials

Download or read book Effects of Radiation on Materials written by Martin L. Grossbeck and published by ASTM International. This book was released on 2004 with total page 767 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Aging Management and Component Analysis

Download or read book Aging Management and Component Analysis written by Vikram N. Shah and published by . This book was released on 2003 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Evaluation of Thermal Annealing Behavior of Neutron Irradiated Reactor Pressure Vessel Steels Using Nondestructive Test Methods

Download or read book Evaluation of Thermal Annealing Behavior of Neutron Irradiated Reactor Pressure Vessel Steels Using Nondestructive Test Methods written by G. Brauer and published by . This book was released on 1989 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: Usually the assessment of the irradiation sensitivity and annealing behavior of reactor pressure vessel (RPV) steels is performed by means of destructive test methods, mainly impact and tension tests. In this paper a new kind of search for an efficient temperature-time regime for postirradiation thermal heat treatment is presented using nondestructive test methods like positron annihilation (Doppler broadening pararneter S) and hardness (Vickers hardness HV 10).

Book Effects of Thermal Annealing and Reirradiation on Toughness of Reactor Pressure Vessel Steels

Download or read book Effects of Thermal Annealing and Reirradiation on Toughness of Reactor Pressure Vessel Steels written by and published by . This book was released on 1996 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPV) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes recent experimental results from work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response, or {open_quotes}recovery, {close_quotes} of several irradiated RPV steels; it also includes recent results from both ORNL and the Russian Research Center-Kurchatov Institute (RRC-KI) on a cooperative program of irradiation, annealing and reirradiation of both U.S. and Russian RPV steels. The cooperative program was conducted under the auspices of Working Group 3, U.S./Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS). The materials investigated are an RPV plate and various submerged-arc welds, with tensile, Charpy impact toughness, and fracture toughness results variously determined. Experimental results are compared with applicable prediction guidelines, while observed differences in annealing responses and reirradiation rates are discussed.

Book A Perspective on Thermal Annealing of Reactor Pressure Vessel Materials from the Viewpoint of Experimental Results

Download or read book A Perspective on Thermal Annealing of Reactor Pressure Vessel Materials from the Viewpoint of Experimental Results written by and published by . This book was released on 1996 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is believed that in the next decade or so, several nuclear reactor pressure vessels (RPVs) may exceed the reference temperature limits set by the pressurized thermal shock screening criteria. One of the options to mitigate the effects of irradiation on RPVs is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes recent experimental results from work performed at the Oak Ridge National Laboratory to study the annealing response, or ''recovery'' of several irradiated RPV steels. The fracture toughness is one of the important properties used in the evaluation of the integrity of RPVs. Optimally, the fracture toughness is measured directly by fracture toughness specimens, such as compact tension or precracked Charpy specimens, but is often inferred from the results of Charpy V-notch impact specimens. The experimental results are compared to the predictions of models for embrittlement recovery which have been developed by Eason et al. Some of the issues in annealing that still need to be resolved are discussed.

Book Energy Research Abstracts

Download or read book Energy Research Abstracts written by and published by . This book was released on 1994 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.

Book Metals Abstracts

Download or read book Metals Abstracts written by and published by . This book was released on 1999-04 with total page 972 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Neutron and Thermal Embrittlement of RPV Steels

Download or read book Neutron and Thermal Embrittlement of RPV Steels written by Randy K. Nanstad and published by . This book was released on 2018 with total page 39 pages. Available in PDF, EPUB and Kindle. Book excerpt: Because the reactor pressure vessel (RPV) represents the first structural line of defense against the release of radiation to the public, the design and fabrication of the RPV for any nuclear reactor facility is performed at very high standards in accordance with consensus codes that are based on mechanical and physical properties of the steels used to construct the vessel. Nuclear RPVs may weigh up to 800 tons with wall thicknesses up to approximately 330 mm and are clad on the inside with stainless-steel weld metal and given a final post-weld heat treatment. The RPV is a unique structural component in that it operates under high pressures and temperatures and is exposed to relatively high neutron radiation. Although typical RPV steels and welds have excellent fracture toughness at room temperature and above when put into service, the degrading effects of high-energy neutron irradiation can cause levels of irradiation-induced embrittlement in radiation-sensitive materials of concern for the structural integrity of the RPV. In recent decades, remarkable progress has been made in developing a mechanistic understanding of irradiation embrittlement. This progress includes developing physically based and statistically calibrated models of Charpy V-notch-indexed transition temperature shifts based on results from RPV surveillance programs complemented by significant results from comprehensive research experiments performed in test reactors. In addition, advances in elastic-plastic fracture mechanics allow for a relatively small number of relatively small specimens to characterize the fracture toughness of RPV steels with statistical confidence. This paper presents a review of the primary mechanical properties, test procedures, examples of applicable codes and standards, and specimen types used to characterize RPV steels and welds, the effects of neutron irradiation on those most relevant mechanical properties, and a brief review of the effects of thermal aging on RPV materials. The paper closes with a summary.

Book Determination of Toughness and Embrittlement for Reactor Pressure Vessel Steels Using Ultrasonic Measurements

Download or read book Determination of Toughness and Embrittlement for Reactor Pressure Vessel Steels Using Ultrasonic Measurements written by A. L. Hiser and published by . This book was released on 2002 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neutron irradiation embrittlement of nuclear reactor pressure vessel (RPV) steels results in a loss of fracture toughness (e.g., reduction in load carrying capacity of the steel). For the setting of operational limits and assuring the continued safe operation of the plant, current procedures estimate the effects of neutron embrittlement using empirical relations or the results of small samples irradiated in the plant. These procedures account for uncertainties in the estimates through the use of margin terms to ensure the conservatism of the resultant estimate vis-a-vis the "real" material toughness. Therefore, the ability to develop non destructive measurements that can estimate the actual RPV steel fracture toughness in situ would provide more accurate evaluations of operating limits for plants. This study was undertaken to evaluate the suitability of ultrasonic attenuation measurements for estimating the fracture toughness of RPV steels. Ultrasonic measurements were made on samples in three distinct phases: (1) a heat treated RPV steel to induce changes in its fracture toughness; (2) several irradiated RPV steels to assess actual neutron embrittlement changes in fracture toughness; and (3) a matrix of unirradiated RPV steels with a range of as fabricated toughness levels. The results indicate that ultrasonic attenuation is generally able to identify differences in responses for samples with different toughness levels, although in some cases the differences in ultrasonic responses are small. The results from the three phases are not consistent, as in some cases reduced toughness results in higher attenuation and in other cases lower attenuation. This trend is not surprising given the different types of microstructural changes that result in the toughness changes for each phase of this work. In addition, different trends were identified for plate and weld materials.

Book Irradiation  Annealing  and Reirradiation Effects on American and Russian Reactor Pressure Vessel Steels

Download or read book Irradiation Annealing and Reirradiation Effects on American and Russian Reactor Pressure Vessel Steels written by MA. Sokolov and published by . This book was released on 2000 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. Even though a postirradiation anneal may be deemed successful, a critical aspect of continued RPV operation is the rate of embrittlement upon reirradiation. There are insufficient data available to allow for verification of available models of reirradiation embrittlement or for the development of a reliable predictive methodology. This is especially true in the case of fracture toughness data. Under the U.S.-Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS), Working Group 3 on Radiation Embrittlement, Structural Integrity, and Life Extension of Reactor Vessels and Supports agreed to conduct a comparative study of annealing and reirradiation effects on RPV steels. The Working Group agreed that each side would irradiate, anneal, reirradiate (if feasible), and test two materials of the other. Charpy V-notch (CVN) and tensile specimens were included. Oak Ridge National Laboratory (ORNL) conducted such a program (irradiation and annealing, including static fracture toughness) with two weld metals representative of VVER-440 and VVER-1000 RPVs, while the Russian Research Center-Kurchatov Institute (RRC-KI) conducted a program (irradiation, annealing, reirradiation, and reannealing) with Heavy-Section Steel Technology (HSST) Program Plate 02 and Heavy-Section Steel Irradiation (HSSI) Program Weld 73W. The results for each material from each laboratory are compared with those from the other laboratory. The ORNL experiments with the VVER welds included irradiation to about 1 x 1019 n/cm2 (>1 MeV), while the RRC-KI experiments with the U.S. materials included irradiations from about 2 to 18 x 1019 n/cm2 (>1 MeV). In both cases, irradiations were conducted at ~290 °C and annealing treatments were conducted at ~454 °C. The ORNL and RRC-KI experiments have shown generally good agreement for both the Russian and U.S. steels. While recoveries of the Charpy 41-J transition temperatures were substantial in all cases, significantly less recovery of the lateral expansion and shear fracture in some cases (no recovery in one case) deserves further attention. The RRC-KI results for the U.S. steels showed reirradiation embrittlement rates which are conservative relative to the lateral shift prediction based on Charpy impact energy.