EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Graphene Field Effect Transistors

Download or read book Graphene Field Effect Transistors written by Omar Azzaroni and published by John Wiley & Sons. This book was released on 2023-10-16 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphene Field-Effect Transistors In-depth resource on making and using graphene field effect transistors for point-of-care diagnostic devices Graphene Field-Effect Transistors focuses on the design, fabrication, characterization, and applications of graphene field effect transistors, summarizing the state-of-the-art in the field and putting forward new ideas regarding future research directions and potential applications. After a review of the unique electronic properties of graphene and the production of graphene and graphene oxide, the main part of the book is devoted to the fabrication of graphene field effect transistors and their sensing applications. Graphene Field-Effect Transistors includes information on: Electronic properties of graphene, production of graphene oxide and reduced graphene oxide, and graphene functionalization Fundamentals and fabrication of graphene field effect transistors, and nanomaterial/graphene nanostructure-based field-effect transistors Graphene field-effect transistors integrated with microfluidic platforms and flexible graphene field-effect transistors Graphene field-effect transistors for diagnostics applications, and DNA biosensors and immunosensors based on graphene field-effect transistors Graphene field-effect transistors for targeting cancer molecules, brain activity recording, bacterial detection, and detection of smell and taste Providing both fundamentals of the technology and an in-depth overview of using graphene field effect transistors for fabricating bioelectronic devices that can be applied for point-of-care diagnostics, Graphene Field-Effect Transistors is an essential reference for materials scientists, engineering scientists, laboratory medics, and biotechnologists.

Book Carbon Based Electronics

Download or read book Carbon Based Electronics written by Ashok Srivastava and published by CRC Press. This book was released on 2015-03-19 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discovery of one-dimensional material carbon nanotubes in 1991 by the Japanese physicist Dr. Sumio Iijima has resulted in voluminous research in the field of carbon nanotubes for numerous applications, including possible replacement of silicon used in the fabrication of CMOS chips. One interesting feature of carbon nanotubes is that these can be me

Book Understanding and Engineering Interfacial Charge Transfer of Carbon Nanotubes and Graphene for Energy and Sensing Applications

Download or read book Understanding and Engineering Interfacial Charge Transfer of Carbon Nanotubes and Graphene for Energy and Sensing Applications written by Geraldine Laura Caroline Paulus and published by . This book was released on 2013 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphene is a one-atom thick planar monolayer of sp2 -bonded carbon atoms organized in a hexagonal crystal lattice. A single walled carbon nanotube (SWCNT) can be thought of as a graphene sheet rolled up into a seamless hollow cylinder with extremely high length-to-diameter ratio. Their large surface area, and exceptional optical, mechanical and electronic properties make these low-dimensional carbon materials ideal candidates for (opto-)electronic and sensing applications. In this thesis I studied the charge transfer processes that occur at their interface, and developed applications based on the discovered properties. When light is incident on a semiconducting SWCNT, it can excite an electron from the valence band to the conduction band, thereby creating a Coulombically bound electron-hole pair, also known as an exciton. Excitons can decay via radiative or non-radiative recombination or by colliding with other excitons. They can diffuse along the length of a SWCNT or hop from larger band gap SWCNTs to smaller band gap SWCNTs, a process known as exciton energy transfer (EET). We studied their behavior as a function of temperature in SWCNT fibers and showed that at room temperature the rate constant for EET is more than two orders of magnitude larger than that of each of the different recombination processes. This led us to construct a core-shell SWCNT fiber, which consists of a core of smaller band gap SWCNTs, surrounded by a shell of larger band gap SWCNTs, essentially forming what is known as a type I heterojunction. In agreement with a model that describes exciton behavior in the SWCNT fibers, we found that upon illumination all the energy (in the form of excitons) was quickly transferred from the shell to the core, faster than the excitons would otherwise recombine. The SWCNT fiber proved to be an efficient optical and energetic concentrator. We showed that SWCNTs and poly(3-hexylthiophene) (P3HT) form a type II heterojunction, which implies that excitons generated in the P3HT can easily dissociate into free charge carriers at the interface with the SWCNTs. Despite this, the efficiency of a P3HT/SWCNT bulk heterojunction (BHJ) photovoltaic is subpar. We developed a P3HT/SWCNT planar heterojunction (PHJ) and achieved efficiencies that were 30 times higher, which showed that the formation of bundled aggregates in BHJs was the cause: metallic SWCNTs can quench the excitons in an entire bundle. Another interesting feature of our SWCNT/P3HT PHJ is that a maximum efficiency was reached when -60 nm of P3HT was used, which is surprising since in a planar photovoltaic a maximum is expected for ~8.5 nm of P3HT, the value of the exciton diffusion length. A Kinetic Monte Carlo simulation revealed that bulk exciton dissociation was responsible for the lower efficiencies observed in devices with low P3HT thickness. Next we created and studied a junction between SWCNTs and a monolayer of graphene, an ideal one-dimensional/two-dimensional carbon interface. We used Raman spectroscopy to probe the degree of charge transfer at the interface and based on a shift in the G peak position of the graphene Raman signal at the junction deduced that a typical metallic (semiconducting) SWCNT dopes the graphene with 1.12 x 1013 cm-2 (0.325 x 101 cm-2) electrons upon contact, in agreement with the fact that the Fermi level of the SWCNTs is more shallow than that of the graphene. A molecular dynamics simulation ruled out that the observed Raman peak shifts are due to strain, although it did show that SWCNTs are being compressed radially by the graphene sheet, resulting in a widening of their Raman peaks. We studied charge transfer between diazonium molecules and graphene, to better inform transistor and sensor design. The reaction rate depends on the degree of overlap between the filled energy levels in graphene and the unoccupied ones in the diazonium molecule. We showed that with increasing degree of functionalization the charge transfer characteristics of a graphene field effect transistor (FET) alter in the following ways: the minimum conductivity decreases, the Dirac point upshifts, the conductivity plateau at high carrier density decreases and the electronhole conduction asymmetry increases. We developed a theoretical model of charge transport in graphene FETs that takes into account the effect of both short-range and long-range scatterers. Fitting it to the charge-transport data reveals quantitative information about the number of impurities in the substrate supporting the graphene, about the number of defects created as a result of the reaction, and about the degree of electron-hole conduction asymmetry. Graphene functionalization also affects the graphene Raman signal. After reaction, the D to G intensity ratio to increases, which is a sign of covalent modification of the graphene lattice. Additionally, the G peak and 2D peak positions increase while the 2D/G intensity ratio decreases, which are signs of hole-doping. Based on a Raman analysis, we were also able to show that the end group of the diazonium salt can affect both the degree of chemisorption (covalent modification) as well as the degree of physisorption (doping). Finally, we studied the effects of charge transfer between graphene and biological cells on the graphene Raman signal and designed a fundamentally new type of biosensor. Graphene can be thought of as a continuous array of information units (sensor units). The Raman signal collected in each unit can report on its local environment. In contrast to graphene FET biosensors, the graphene Raman biosensor offers subcellular spatial resolution. The graphene Raman signal was shown to display a strong dependence on pH. Metabolically active cells acidify their local environment; therefore, pH is a proxy for cellular metabolism. We placed both human embryonic kidney (HEK) cells that were genetically engineered to produce mouse antibodies and control HEK cells that were not genetically modified onto the graphene. Based on the change in the graphene Raman signal we deduced the former have a metabolic rate that is four times higher than that of the control cells. Increased cellular adhesion allows the cells to interact more closely with the graphene monolayer and intensifies the observed Raman effects.

Book Solution Processed Carbon Nanotube and Chemically Synthesized Graphene Nanoribbon Field Effect Transistors

Download or read book Solution Processed Carbon Nanotube and Chemically Synthesized Graphene Nanoribbon Field Effect Transistors written by Patrick B. Bennett and published by . This book was released on 2014 with total page 81 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon nanotubes (CNTs) possess great potential as high performance semiconducting channels due to their one-dimensional nature, extremely high mobility, and their demonstrated ability to transport electrons ballistically in transistors. However, the presence of metallic CNTs in CNT films and arrays represents a major impediment towards large-scale integration. Methods of solution purification have demonstrated partial success in metallic CNT removal, although their effects on device performance are unknown. While this problem may be solvable, new synthesis techniques have recently resulted in the creation of high-density films of graphene nanoribbons (GNRs) with atomically smooth edges, uniform widths, and uniform band structure. These may ultimately supplant CNTs in device applications due to their theoretically similar, but uniform electronic properties. This work aims to study the effects of purification of semiconducting CNTs in thin film transistors (TFTs) and to develop methods to increase device performance when metallic CNTs are present. Devices consisting of large networks of CNTs as well as short channel, single CNT devices are characterized to determine the effects of solution processing on CNTs themselves. Short channel, bottom-up GNR devices are fabricated to compare their performance to CNT transistors. The first half of this dissertation describes the methods of integrating CNTs from various sources into transistors. Growth and transfer are described, as well as methods of creating aqueous suspensions for solution processing. Development of novel surfactant materials based on biomimetic polymers used to suspend CNTs in solution are reported and characterized. Methods of deposition out of solution and onto insulating substrates are covered. Device fabrication from start to finish is detailed, with the subtleties of processing required to produce sub 10-nm channel length devices explained. The second half reports devices produced via these techniques in order to study the performance of solution-processed CNT devices. TFT performance is limited by metallic CNTs that can short channels, but can be improved by structuring the CNT film, either through patterning or induced alignment. Increasing semiconducting CNT purity does not necessarily increase device performance because of the decreased lengths of the purified CNTs. Extremely high purity semiconducting CNT solutions, however, are not subject to these same limitations, with transistors exhibiting improved mobilities while also scaling to sub-μm channel lengths. Short channel devices down to 15 nm are then presented, demonstrating ballistic transport in solution-processed CNTs, despite their inferior electronic performance at μm-scale lengths. Finally, short channel devices utilizing chemically synthesized GNRs as channels are presented and characterized to directly probe the mechanisms of electron transport in these materials for the first time.

Book Gas Adsorption on Suspended Carbon Nanotubes and Graphene

Download or read book Gas Adsorption on Suspended Carbon Nanotubes and Graphene written by Boris Dzyubenko and published by . This book was released on 2017 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rare gas adsorption was studied on suspended individual single walled carbon nanotubes and graphene. The devices were fabricated as field effect transistors. Adsorption on graphene was studied through two-terminal conductance. On nanotube devices adsorption was studied through conductance while the coverage (density) of the adsorbates was determined from the mechanical resonance frequency shifts. The adsorbed atoms modified the conductance of the nanotube field effect transistors, in part through charge transfer from the adsorbates to the nanotube. By tracking the shifts of conductance as a function of gate voltage, G=G(Vg), and comparing these shifts with the periodicity of the Coulomb blockade oscillations we quantified the charge transfer to the nanotubes with high accuracy. For all studied gases (He, Ar, Kr, Xe, N2, CO, and O2) the charge transfer had a similar magnitude and was rather small, on the order of 10^-5 to 10^-3 electrons per adsorbed atom. The nanotube devices displayed two classes of adsorption behavior. On some devices the monolayers exhibited first-order phase transitions analogous to those that occur in adsorbed monolayers on graphite. On other devices phase transitions within the adsorbed monolayers were absent. We present evidence that a highly uniform layer of contaminants deposits on the surface of suspended nanotube devices either upon cooldown in the cryostat or at room temperature from air. These contaminants modify the adsorption behavior preventing the adsorbed monolayers from exhibiting the first order phase transitions expected to occur on a clean surface. A similar type of contamination leading to virtually identical effects occurs on suspended graphene. In the low coverage regions of isotherms on nanotubes we observe Henry's law behavior, demonstrating a high uniformity of the surface and allowing us to accurately determine the single particle binding energy to this surface. The determined binding energies were 776+-10 K for Ar, and 997+-37 K for Kr. In the second part of the dissertation we present the first measurements of adsorption on a pristine graphene surface, exposed through aggressive electric current annealing. On graphene the rare gas adsorbates form monolayers with phases analogous to those on graphite, but with phase transitions occurring at slightly higher pressures due to a reduction of binding energy. The condensations of monolayers with phases not commensurate with the graphene lattice resulted in a slight shift of the charge neutrality point of monolayer graphene corresponding to a change of carrier concentration on the order of 10^9 e/cm^2. Adsorption of N2 and CO, which formed a Root 3 X Root 3 commensurate solid monolayer, produced a dramatic reduction of the two-terminal conductance of graphene by as much as a factor of three. This effect is possibly connected with the opening of a band gap expected to occur in such structures. We observe hysteretic behavior in the adsorbed Root 3 X Root 3 commensurate monolayers on freestanding graphene, which is likely due to the interaction of two adsorbed monolayers on opposite surfaces of the graphene sheet.

Book Analysis and Optimization of Graphene FET Based Nanoelectronic Integrated Circuits

Download or read book Analysis and Optimization of Graphene FET Based Nanoelectronic Integrated Circuits written by Shital Joshi and published by . This book was released on 2016 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Like cell to the human body, transistors are the basic building blocks of any electronics circuits. Silicon has been the industries obvious choice for making transistors. Transistors with large size occupy large chip area, consume lots of power and the number of functionalities will be limited due to area constraints. Thus to make the devices smaller, smarter and faster, the transistors are aggressively scaled down in each generation. Moore's law states that the transistors count in any electronic circuits doubles every 18 months. Following this Moore's law, the transistor has already been scaled down to 14 nm. However there are limitations to how much further these transistors can be scaled down. Particularly below 10 nm, these silicon based transistors hit the fundamental limits like loss of gate control, high leakage and various other short channel effects. Thus it is not possible to favor the silicon transistors for future electronics applications. As a result, the research has shifted to new device concepts and device materials alternative to silicon. Carbon is the next abundant element found in the Earth and one of such carbon based nanomaterial is graphene. Graphene when extracted from Graphite, the same material used as the lid in pencil, have a tremendous potential to take future electronics devices to new heights in terms of size, cost and efficiency. Thus after its first experimental discovery of graphene in 2004, graphene has been the leading research area for both academics as well as industries. This dissertation is focused on the analysis and optimization of graphene based circuits for future electronics. The first part of this dissertation considers graphene based transistors for analog/radio frequency (RF) circuits. In this section, a dual gate Graphene Field Effect Transistor (GFET) is considered to build the case study circuits like voltage controlled oscillator (VCO) and low noise amplifier (LNA). The behavioral model of the transistor is modeled in different tools: well accepted EDA (electronic design automation) and a non-EDA based tool i.e. \simscape. This section of the dissertation addresses the application of non-EDA based concepts for the analysis of new device concepts, taking LC-VCO and LNA as a case study circuits. The non-EDA based approach is very handy for a new device material when the concept is not matured and the model files are not readily available from the fab. The results matches very well with that of the EDA tools. The second part of the section considers application of multiswarm optimization (MSO) in an EDA tool to explore the design space for the design of LC-VCO. The VCO provides an oscillation frequency at 2.85 GHz, with phase noise of less than -80 dBc/Hz and power dissipation less than 16 mW. The second part of this dissertation considers graphene nanotube field effect transistors (GNRFET) for the application of digital domain. As a case study, static random access memory (SRAM) hs been design and the results shows a very promising future for GNRFET based SRAM as compared to silicon based transistor SRAM. The power comparison between the two shows that GNRFET based SRAM are 93% more power efficient than the silicon transistor based SRAM at 45 nm. In summary, the dissertation is to expected to aid the state of the art in following ways: 1) A non-EDA based tool has been used to characterize the device and measure the circuit performance. The results well matches to that obtained from the EDA tools. This tool becomes very handy for new device concepts when the simulation needs to be fast and accuracy can be tradeoff with. 2)Since an analog domain lacks well-design design paradigm, as compared to digital domain, this dissertation considers case study circuits to design the circuits and apply optimization. 3) Performance comparison of GNRFET based SRAM to the conventional silicon based SRAM shows that with maturation of the fabrication technology, graphene can be very useful for digital circuits as well.

Book Nanoscale Science and Technology

Download or read book Nanoscale Science and Technology written by Robert Kelsall and published by John Wiley & Sons. This book was released on 2005-11-01 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanotechnology is a vital new area of research and development addressing the control, modification and fabrication of materials, structures and devices with nanometre precision and the synthesis of such structures into systems of micro- and macroscopic dimensions. Future applications of nanoscale science and technology include motors smaller than the diameter of a human hair and single-celled organisms programmed to fabricate materials with nanometer precision. Miniaturisation has revolutionised the semiconductor industry by making possible inexpensive integrated electronic circuits comprised of devices and wires with sub-micrometer dimensions. These integrated circuits are now ubiquitous, controlling everything from cars to toasters. The next level of miniaturisation, beyond sub-micrometer dimensions into nanoscale dimensions (invisible to the unaided human eye) is a booming area of research and development. This is a very hot area of research with large amounts of venture capital and government funding being invested worldwide, as such Nanoscale Science and Technology has a broad appeal based upon an interdisciplinary approach, covering aspects of physics, chemistry, biology, materials science and electronic engineering. Kelsall et al present a coherent approach to nanoscale sciences, which will be invaluable to graduate level students and researchers and practising engineers and product designers.

Book Handbook of Visual Display Technology

Download or read book Handbook of Visual Display Technology written by Janglin Chen and published by Springer. This book was released on 2012-01-23 with total page 2700 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook offers a comprehensive description of the science, technology, economic and human interface factors associated with the displays industry. With expert contributions from over 150 international display professionals and academic researchers, it covers all classes of display device and discusses established principles, emergent technologies, and particular areas of application.

Book Printed Flexible Sensors

Download or read book Printed Flexible Sensors written by Anindya Nag and published by Springer. This book was released on 2019-03-11 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent advances in the design, fabrication and implementation of flexible printed sensors. It explores a range of materials for developing the electrode and substrate parts of the sensors, on the basis of their electrical and mechanical characteristics. The sensors were processed using laser cutting and 3D printing techniques, and the sensors developed were employed in a number of healthcare, environmental and industrial applications, including: monitoring of physiological movements, respiration, salinity and nitrate measurement, and tactile sensing. The type of sensor selected for each application depended on its dimensions, robustness and sensitivity. The sensors fabricated were also embedded in an IoT-based system, allowing them to be integrated into real-time applications.

Book Enzyme Technology

    Book Details:
  • Author : Martin F. Chaplin
  • Publisher : CUP Archive
  • Release : 1990-08-31
  • ISBN : 9780521348843
  • Pages : 292 pages

Download or read book Enzyme Technology written by Martin F. Chaplin and published by CUP Archive. This book was released on 1990-08-31 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a clear and authoritative guide to the principles and practice of the utilization of enzymes in biotechnology. Enzymes have increasingly important applications in the food and pharmaceutical industry, in medicine, and as biosensors.

Book Carbon Nanotube Polymer Composites

Download or read book Carbon Nanotube Polymer Composites written by Dimitrios Tasis and published by Royal Society of Chemistry. This book was released on 2015-11-09 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemically-modified carbon nanotubes (CNTs) exhibit a wide range of physical and chemical properties which makes them an attractive starting material for the preparation of super-strong and highly-conductive fibres and films. Much information is available across the primary literature, making it difficult to obtain an overall picture of the state-of-the-art. This volume brings together some of the leading researchers in the field from across the globe to present the potential these materials have, not only in developing and characterising novel materials but also the devices which can be fabricated from them. Topics featured in the book include Raman characterisation, industrial polymer materials, actuators and sensors and polymer reinforcement, with chapters prepared by highly-cited authors from across the globe. A valuable handbook for any academic or industrial laboratory, this book will appeal to newcomers to the field and established researchers alike.

Book VLSI Design

    Book Details:
  • Author : Esteban Tlelo-Cuautle
  • Publisher : BoD – Books on Demand
  • Release : 2012-01-20
  • ISBN : 9533078847
  • Pages : 306 pages

Download or read book VLSI Design written by Esteban Tlelo-Cuautle and published by BoD – Books on Demand. This book was released on 2012-01-20 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides some recent advances in design nanometer VLSI chips. The selected topics try to present some open problems and challenges with important topics ranging from design tools, new post-silicon devices, GPU-based parallel computing, emerging 3D integration, and antenna design. The book consists of two parts, with chapters such as: VLSI design for multi-sensor smart systems on a chip, Three-dimensional integrated circuits design for thousand-core processors, Parallel symbolic analysis of large analog circuits on GPU platforms, Algorithms for CAD tools VLSI design, A multilevel memetic algorithm for large SAT-encoded problems, etc.

Book Nanoelectronic Mixed Signal System Design

Download or read book Nanoelectronic Mixed Signal System Design written by Saraju Mohanty and published by McGraw Hill Professional. This book was released on 2015-02-20 with total page 829 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering both the classical and emerging nanoelectronic technologies being used in mixed-signal design, this book addresses digital, analog, and memory components. Winner of the Association of American Publishers' 2016 PROSE Award in the Textbook/Physical Sciences & Mathematics category. Nanoelectronic Mixed-Signal System Design offers professionals and students a unified perspective on the science, engineering, and technology behind nanoelectronics system design. Written by the director of the NanoSystem Design Laboratory at the University of North Texas, this comprehensive guide provides a large-scale picture of the design and manufacturing aspects of nanoelectronic-based systems. It features dual coverage of mixed-signal circuit and system design, rather than just digital or analog-only. Key topics such as process variations, power dissipation, and security aspects of electronic system design are discussed. Top-down analysis of all stages--from design to manufacturing Coverage of current and developing nanoelectronic technologies--not just nano-CMOS Describes the basics of nanoelectronic technology and the structure of popular electronic systems Reveals the techniques required for design excellence and manufacturability

Book Carbon Nanotubes

    Book Details:
  • Author : M. Endo
  • Publisher : Elsevier
  • Release : 2013-10-22
  • ISBN : 008054553X
  • Pages : 200 pages

Download or read book Carbon Nanotubes written by M. Endo and published by Elsevier. This book was released on 2013-10-22 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon nanotubes have been studied extensively in relation to fullerenes, and together with fullerenes have opened a new science and technology field on nano scale materials. A whole range of issues from the preparation, structure, properties and observation of quantum effects in carbon nanotubes in comparison with 0-D fullerenes are discussed. In addition, complementary reviews on carbon nanoparticles such as carbon nano-capsules, onion-like graphite particles and metal-coated fullerenes are covered. This book aims to cover recent research and development in this area, and so provide a convenient reference tool for all researchers in this field. It is also hoped that this book can serve to stimulate future work on carbon nanotubes.

Book Handbook of Carbon Nanotubes

Download or read book Handbook of Carbon Nanotubes written by Jiji Abraham and published by Springer Nature. This book was released on 2022-11-16 with total page 2099 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Handbook covers the fundamentals of carbon nanotubes (CNT), their composites with different polymeric materials (both natural and synthetic) and their potential advanced applications. Three different parts dedicated to each of these aspects are provided, with chapters written by worldwide experts in the field. It provides in-depth information about this material serving as a reference book for a broad range of scientists, industrial practitioners, graduate and undergraduate students, and other professionals in the fields of polymer science and engineering, materials science, surface science, bioengineering and chemical engineering. Part 1 comprises 22 chapters covering early stages of the development of CNT, synthesis techniques, growth mechanism, the physics and chemistry of CNT, various innovative characterization techniques, the need of functionalization and different types of functionalization methods as well as the different properties of CNT. A full chapter is devoted to theory and simulation aspects. Moreover, it pursues a significant amount of work on life cycle analysis of CNT and toxicity aspects. Part 2 covers CNT-based polymer nanocomposites in approximately 23 chapters. It starts with a short introduction about polymer nanocomposites with special emphasis on CNT-based polymer nanocomposites, different manufacturing techniques as well as critical issues concerning CNT-based polymer nanocomposites. The text deeply reviews various classes of polymers like thermoset, elastomer, latex, amorphous thermoplastic, crystalline thermoplastic and polymer fibers used to prepare CNT based polymer composites. It provides detailed awareness about the characterization of polymer composites. The morphological, rheological, mechanical, viscoelastic, thermal, electrical, electromagnetic shielding properties are discussed in detail. A chapter dedicated to the simulation and multiscale modelling of polymer nanocomposites is an additional attraction of this part of the Handbook. Part 3 covers various potential applications of CNT in approximately 27 chapters. It focuses on individual applications of CNT including mechanical applications, energy conversion and storage applications, fuel cells and water splitting, solar cells and photovoltaics, sensing applications, nanofluidics, nanoelectronics and microelectronic devices, nano-optics, nanophotonics and nano-optoelectronics, non-linear optical applications, piezo electric applications, agriculture applications, biomedical applications, thermal materials, environmental remediation applications, anti-microbial and antibacterial properties and other miscellaneous applications and multi-functional applications of CNT based polymer nanocomposites. One chapter is fully focussed on carbon nanotube research developments: published papers and patents. Risks associated with carbon nanotubes and competitive analysis of carbon nanotubes with other carbon allotropes are also addressed in this Handbook.