Download or read book Forecasting principles and practice written by Rob J Hyndman and published by OTexts. This book was released on 2018-05-08 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.
Download or read book Data Analysis with Open Source Tools written by Philipp K. Janert and published by "O'Reilly Media, Inc.". This book was released on 2010-11-11 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collecting data is relatively easy, but turning raw information into something useful requires that you know how to extract precisely what you need. With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications. Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you. Use graphics to describe data with one, two, or dozens of variables Develop conceptual models using back-of-the-envelope calculations, as well asscaling and probability arguments Mine data with computationally intensive methods such as simulation and clustering Make your conclusions understandable through reports, dashboards, and other metrics programs Understand financial calculations, including the time-value of money Use dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situations Become familiar with different open source programming environments for data analysis "Finally, a concise reference for understanding how to conquer piles of data."--Austin King, Senior Web Developer, Mozilla "An indispensable text for aspiring data scientists."--Michael E. Driscoll, CEO/Founder, Dataspora
Download or read book Introductory Time Series with R written by Paul S.P. Cowpertwait and published by Springer Science & Business Media. This book was released on 2009-05-28 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives you a step-by-step introduction to analysing time series using the open source software R. Each time series model is motivated with practical applications, and is defined in mathematical notation. Once the model has been introduced it is used to generate synthetic data, using R code, and these generated data are then used to estimate its parameters. This sequence enhances understanding of both the time series model and the R function used to fit the model to data. Finally, the model is used to analyse observed data taken from a practical application. By using R, the whole procedure can be reproduced by the reader. All the data sets used in the book are available on the website http://staff.elena.aut.ac.nz/Paul-Cowpertwait/ts/. The book is written for undergraduate students of mathematics, economics, business and finance, geography, engineering and related disciplines, and postgraduate students who may need to analyse time series as part of their taught programme or their research.
Download or read book Machine Learning for Time Series Forecasting with Python written by Francesca Lazzeri and published by John Wiley & Sons. This book was released on 2020-12-03 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to apply the principles of machine learning to time series modeling with this indispensable resource Machine Learning for Time Series Forecasting with Python is an incisive and straightforward examination of one of the most crucial elements of decision-making in finance, marketing, education, and healthcare: time series modeling. Despite the centrality of time series forecasting, few business analysts are familiar with the power or utility of applying machine learning to time series modeling. Author Francesca Lazzeri, a distinguished machine learning scientist and economist, corrects that deficiency by providing readers with comprehensive and approachable explanation and treatment of the application of machine learning to time series forecasting. Written for readers who have little to no experience in time series forecasting or machine learning, the book comprehensively covers all the topics necessary to: Understand time series forecasting concepts, such as stationarity, horizon, trend, and seasonality Prepare time series data for modeling Evaluate time series forecasting models’ performance and accuracy Understand when to use neural networks instead of traditional time series models in time series forecasting Machine Learning for Time Series Forecasting with Python is full real-world examples, resources and concrete strategies to help readers explore and transform data and develop usable, practical time series forecasts. Perfect for entry-level data scientists, business analysts, developers, and researchers, this book is an invaluable and indispensable guide to the fundamental and advanced concepts of machine learning applied to time series modeling.
Download or read book The Econometric Analysis of Seasonal Time Series written by Eric Ghysels and published by Cambridge University Press. This book was released on 2001-06-18 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eric Ghysels and Denise R. Osborn provide a thorough and timely review of the recent developments in the econometric analysis of seasonal economic time series, summarizing a decade of theoretical advances in the area. The authors discuss the asymptotic distribution theory for linear nonstationary seasonal stochastic processes. They also cover the latest contributions to the theory and practice of seasonal adjustment, together with its implications for estimation and hypothesis testing. Moreover, a comprehensive analysis of periodic models is provided, including stationary and nonstationary cases. The book concludes with a discussion of some nonlinear seasonal and periodic models. The treatment is designed for an audience of researchers and advanced graduate students.
Download or read book Macroeconometrics and Time Series Analysis written by Steven Durlauf and published by Springer. This book was released on 2016-04-30 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Specially selected from The New Palgrave Dictionary of Economics 2nd edition, each article within this compendium covers the fundamental themes within the discipline and is written by a leading practitioner in the field. A handy reference tool.
Download or read book R Cookbook written by Paul Teetor and published by "O'Reilly Media, Inc.". This book was released on 2011-03-03 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: With more than 200 practical recipes, this book helps you perform data analysis with R quickly and efficiently. The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression. Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you’re a beginner, R Cookbook will help get you started. If you’re an experienced data programmer, it will jog your memory and expand your horizons. You’ll get the job done faster and learn more about R in the process. Create vectors, handle variables, and perform other basic functions Input and output data Tackle data structures such as matrices, lists, factors, and data frames Work with probability, probability distributions, and random variables Calculate statistics and confidence intervals, and perform statistical tests Create a variety of graphic displays Build statistical models with linear regressions and analysis of variance (ANOVA) Explore advanced statistical techniques, such as finding clusters in your data "Wonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language—one practical example at a time."—Jeffrey Ryan, software consultant and R package author
Download or read book Modeling of Transport Demand written by V.A Profillidis and published by Elsevier. This book was released on 2018-10-23 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling of Transport Demand explains the mechanisms of transport demand, from analysis to calculation and forecasting. Packed with strategies for forecasting future demand for all transport modes, the book helps readers assess the validity and accuracy of demand forecasts. Forecasting and evaluating transport demand is an essential task of transport professionals and researchers that affects the design, extension, operation, and maintenance of all transport infrastructures. Accurate demand forecasts are necessary for companies and government entities when planning future fleet size, human resource needs, revenues, expenses, and budgets. The operational and planning skills provided in Modeling of Transport Demand help readers solve the problems they face on a daily basis. Modeling of Transport Demand is written for researchers, professionals, undergraduate and graduate students at every stage in their careers, from novice to expert. The book assists those tasked with constructing qualitative models (based on executive judgment, Delphi, scenario writing, survey methods) or quantitative ones (based on statistical, time series, econometric, gravity, artificial neural network, and fuzzy methods) in choosing the most suitable solution for all types of transport applications. - Presents the most recent and relevant findings and research - both at theoretical and practical levels - of transport demand - Provides a theoretical analysis and formulations that are clearly presented for ease of understanding - Covers analysis for all modes of transportation - Includes case studies that present the most appropriate formulas and methods for finding solutions and evaluating results
Download or read book Time Series Models for Business and Economic Forecasting written by Philip Hans Franses and published by Cambridge University Press. This book was released on 1998-10-15 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to time series models for business and economic forecasting.
Download or read book The New Palgrave Dictionary of Economics written by and published by Springer. This book was released on 2016-05-18 with total page 7493 pages. Available in PDF, EPUB and Kindle. Book excerpt: The award-winning The New Palgrave Dictionary of Economics, 2nd edition is now available as a dynamic online resource. Consisting of over 1,900 articles written by leading figures in the field including Nobel prize winners, this is the definitive scholarly reference work for a new generation of economists. Regularly updated! This product is a subscription based product.
Download or read book Seasonality in Regression written by Svend Hylleberg and published by Academic Press. This book was released on 2014-05-10 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Seasonality in Regression presents the problems of seasonality in economic regression models. This book discusses the procedures that may have application in practical econometric work. Organized into eight chapters, this book begins with an overview of the tremendous increase in the computational capabilities made by the development of the electronic computer that has profound implications for the way seasonality is handled by economists. This text then examines some seasonal models and their characteristics. Other chapters consider the most frequently applied evaluation criteria and appraise the values in the applications. This book discusses as well the frequency domain estimators and provides insight into problems of estimating the disturbance–covariance matrix through the use of the disturbance spectrum. The final chapter deals with the main objective of the treatment of personality to formulate and estimate econometric models. This book is a valuable resource for economists and econometricians who have knowledge of econometrics at an advanced undergraduate or graduate level.
Download or read book The Concise Encyclopedia of Statistics written by Yadolah Dodge and published by Springer Science & Business Media. This book was released on 2008-04-15 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Concise Encyclopedia of Statistics presents the essential information about statistical tests, concepts, and analytical methods in language that is accessible to practitioners and students of the vast community using statistics in medicine, engineering, physical science, life science, social science, and business/economics. The reference is alphabetically arranged to provide quick access to the fundamental tools of statistical methodology and biographies of famous statisticians. The more than 500 entries include definitions, history, mathematical details, limitations, examples, references, and further readings. All entries include cross-references as well as the key citations. The back matter includes a timeline of statistical inventions. This reference will be an enduring resource for locating convenient overviews about this essential field of study.
Download or read book Introduction to Time Series and Forecasting written by Peter J. Brockwell and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: Some of the key mathematical results are stated without proof in order to make the underlying theory acccessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and non-stationary time series are developed in detail and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills in this area. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Additional topics include harmonic regression, the Burg and Hannan-Rissanen algorithms, unit roots, regression with ARMA errors, structural models, the EM algorithm, generalized state-space models with applications to time series of count data, exponential smoothing, the Holt-Winters and ARAR forecasting algorithms, transfer function models and intervention analysis. Brief introducitons are also given to cointegration and to non-linear, continuous-time and long-memory models. The time series package included in the back of the book is a slightly modified version of the package ITSM, published separately as ITSM for Windows, by Springer-Verlag, 1994. It does not handle such large data sets as ITSM for Windows, but like the latter, runs on IBM-PC compatible computers under either DOS or Windows (version 3.1 or later). The programs are all menu-driven so that the reader can immediately apply the techniques in the book to time series data, with a minimal investment of time in the computational and algorithmic aspects of the analysis.
Download or read book Time Series Analysis and Its Applications written by Robert H. Shumway and published by . This book was released on 2014-01-15 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Core Concepts and Methods in Load Forecasting written by Stephen Haben and published by Springer Nature. This book was released on 2023-06-01 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive open access book enables readers to discover the essential techniques for load forecasting in electricity networks, particularly for active distribution networks. From statistical methods to deep learning and probabilistic approaches, the book covers a wide range of techniques and includes real-world applications and a worked examples using actual electricity data (including an example implemented through shared code). Advanced topics for further research are also included, as well as a detailed appendix on where to find data and additional reading. As the smart grid and low carbon economy continue to evolve, the proper development of forecasting methods is vital. This book is a must-read for students, industry professionals, and anyone interested in forecasting for smart control applications, demand-side response, energy markets, and renewable utilization.
Download or read book Seasonal Adjustment Methods and Real Time Trend Cycle Estimation written by Estela Bee Dagum and published by Springer. This book was released on 2016-06-20 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores widely used seasonal adjustment methods and recent developments in real time trend-cycle estimation. It discusses in detail the properties and limitations of X12ARIMA, TRAMO-SEATS and STAMP - the main seasonal adjustment methods used by statistical agencies. Several real-world cases illustrate each method and real data examples can be followed throughout the text. The trend-cycle estimation is presented using nonparametric techniques based on moving averages, linear filters and reproducing kernel Hilbert spaces, taking recent advances into account. The book provides a systematical treatment of results that to date have been scattered throughout the literature. Seasonal adjustment and real time trend-cycle prediction play an essential part at all levels of activity in modern economies. They are used by governments to counteract cyclical recessions, by central banks to control inflation, by decision makers for better modeling and planning and by hospitals, manufacturers, builders, transportation, and consumers in general to decide on appropriate action. This book appeals to practitioners in government institutions, finance and business, macroeconomists, and other professionals who use economic data as well as academic researchers in time series analysis, seasonal adjustment methods, filtering and signal extraction. It is also useful for graduate and final-year undergraduate courses in econometrics and time series with a good understanding of linear regression and matrix algebra, as well as ARIMA modelling.
Download or read book Introduction to Time Series Forecasting With Python written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2017-02-16 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time series forecasting is different from other machine learning problems. The key difference is the fixed sequence of observations and the constraints and additional structure this provides. In this Ebook, finally cut through the math and specialized methods for time series forecasting. Using clear explanations, standard Python libraries and step-by-step tutorials you will discover how to load and prepare data, evaluate model skill, and implement forecasting models for time series data.