Download or read book Combinatorial Reciprocity Theorems written by Matthias Beck and published by American Mathematical Soc.. This book was released on 2018-12-12 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorial reciprocity is a very interesting phenomenon, which can be described as follows: A polynomial, whose values at positive integers count combinatorial objects of some sort, may give the number of combinatorial objects of a different sort when evaluated at negative integers (and suitably normalized). Such combinatorial reciprocity theorems occur in connections with graphs, partially ordered sets, polyhedra, and more. Using the combinatorial reciprocity theorems as a leitmotif, this book unfolds central ideas and techniques in enumerative and geometric combinatorics. Written in a friendly writing style, this is an accessible graduate textbook with almost 300 exercises, numerous illustrations, and pointers to the research literature. Topics include concise introductions to partially ordered sets, polyhedral geometry, and rational generating functions, followed by highly original chapters on subdivisions, geometric realizations of partially ordered sets, and hyperplane arrangements.
Download or read book Combinatorial Reciprocity Theorems written by R. P. Stanley and published by . This book was released on 1974 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Combinatorics and Commutative Algebra written by Richard P. Stanley and published by Springer Science & Business Media. This book was released on 2004-10-15 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Stanley represents a broad perspective with respect to two significant topics from Combinatorial Commutative Algebra: 1) The theory of invariants of a torus acting linearly on a polynomial ring, and 2) The face ring of a simplicial complex * In this new edition, the author further develops some interesting properties of face rings with application to combinatorics
Download or read book Combinatorics written by M. Hall Jr. and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorics has come of age. It had its beginnings in a number of puzzles which have still not lost their charm. Among these are EULER'S problem of the 36 officers and the KONIGSBERG bridge problem, BACHET's problem of the weights, and the Reverend T.P. KIRKMAN'S problem of the schoolgirls. Many of the topics treated in ROUSE BALL'S Recreational Mathe matics belong to combinatorial theory. All of this has now changed. The solution of the puzzles has led to a large and sophisticated theory with many complex ramifications. And it seems probable that the four color problem will only be solved in terms of as yet undiscovered deep results in graph theory. Combinatorics and the theory of numbers have much in common. In both theories there are many prob lems which are easy to state in terms understandable by the layman, but whose solution depends on complicated and abstruse methods. And there are now interconnections between these theories in terms of which each enriches the other. Combinatorics includes a diversity of topics which do however have interrelations in superficially unexpected ways. The instructional lectures included in these proceedings have been divided into six major areas: 1. Theory of designs; 2. Graph theory; 3. Combinatorial group theory; 4. Finite geometry; 5. Foundations, partitions and combinatorial geometry; 6. Coding theory. They are designed to give an overview of the classical foundations of the subjects treated and also some indication of the present frontiers of research.
Download or read book Combinatorics and Commutative Algebra written by Richard P. Stanley and published by Springer Science & Business Media. This book was released on 2007-12-13 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Stanley represents a broad perspective with respect to two significant topics from Combinatorial Commutative Algebra: 1) The theory of invariants of a torus acting linearly on a polynomial ring, and 2) The face ring of a simplicial complex * In this new edition, the author further develops some interesting properties of face rings with application to combinatorics
Download or read book Combinatorics The Art of Counting written by Bruce E. Sagan and published by American Mathematical Soc.. This book was released on 2020-10-16 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.
Download or read book Selected Works of Richard P Stanley written by Victor Reiner and published by American Mathematical Soc.. This book was released on 2017-05-17 with total page 842 pages. Available in PDF, EPUB and Kindle. Book excerpt: Richard Stanley's work in combinatorics revolutionized and reshaped the subject. Many of his hallmark ideas and techniques imported from other areas of mathematics have become mainstays in the framework of modern combinatorics. In addition to collecting several of Stanley's most influential papers, this volume also includes his own short reminiscences on his early years, and on his celebrated proof of The Upper Bound Theorem.
Download or read book Combinatorics The Rota Way written by Joseph P. S. Kung and published by Cambridge University Press. This book was released on 2009-02-09 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compiled and edited by two of Gian-Carlo Rota's students, this book is based on notes from his influential combinatorics courses.
Download or read book Relations between Combinatorics and Other Parts of Mathematics written by Dijen Ray-Chaudhuri and published by American Mathematical Soc.. This book was released on 1979 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brings into focus interconnections between combinatorics on the one hand and geometry, group theory, number theory, special functions, lattice packings, logic, topological embeddings, games, experimental dsigns, and sociological and biological applications on the other hand.
Download or read book Algebraic And Geometric Combinatorics On Lattice Polytopes Proceedings Of The Summer Workshop On Lattice Polytopes written by Takayuki Hibi and published by World Scientific. This book was released on 2019-05-30 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of research papers and expository survey articles presented by the invited speakers of the Summer Workshop on Lattice Polytopes. Topics include enumerative, algebraic and geometric combinatorics on lattice polytopes, topological combinatorics, commutative algebra and toric varieties.Readers will find that this volume showcases current trends on lattice polytopes and stimulates further developments of many research areas surrounding this field. With the survey articles, research papers and open problems, this volume provides its fundamental materials for graduate students to learn and researchers to find exciting activities and avenues for further exploration on lattice polytopes.
Download or read book The Mathematical Legacy of Richard P Stanley written by Patricia Hersh and published by American Mathematical Soc.. This book was released on 2016-12-08 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Richard Stanley's work in combinatorics revolutionized and reshaped the subject. His lectures, papers, and books inspired a generation of researchers. In this volume, these researchers explain how Stanley's vision and insights influenced and guided their own perspectives on the subject. As a valuable bonus, this book contains a collection of Stanley's short comments on each of his papers. This book may serve as an introduction to several different threads of ongoing research in combinatorics as well as giving historical perspective.
Download or read book Combinatorial Mathematics Optimal Designs and Their Applications written by and published by Elsevier. This book was released on 2011-08-26 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorial Mathematics, Optimal Designs, and Their Applications
Download or read book Combinatorics written by and published by . This book was released on 1974 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Algebraic Combinatorics written by Richard P. Stanley and published by Springer Science & Business Media. This book was released on 2013-06-17 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author’s extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound knowledge to mathematical, engineering, and business models. The text is primarily intended for use in a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory. Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and group theory. The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix–Tree Theorem, and the Sperner property. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees. Richard Stanley is currently professor of Applied Mathematics at the Massachusetts Institute of Technology. Stanley has received several awards including the George Polya Prize in applied combinatorics, the Guggenheim Fellowship, and the Leroy P. Steele Prize for mathematical exposition. Also by the author: Combinatorics and Commutative Algebra, Second Edition, © Birkhauser.
Download or read book Computing the Continuous Discretely written by Matthias Beck and published by Springer. This book was released on 2015-11-14 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is perfect for a capstone course, and adds two new chapters, many new exercises, and updated open problems. For scientists, this text can be utilized as a self-contained tooling device. The topics include a friendly invitation to Ehrhart’s theory of counting lattice points in polytopes, finite Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums, solid angles, Euler–Maclaurin summation for polytopes, computational geometry, magic squares, zonotopes, and more. With more than 300 exercises and open research problems, the reader is an active participant, carried through diverse but tightly woven mathematical fields that are inspired by an innocently elementary question: What are the relationships between the continuous volume of a polytope and its discrete volume? Reviews of the first edition: “You owe it to yourself to pick up a copy of Computing the Continuous Discretely to read about a number of interesting problems in geometry, number theory, and combinatorics.” — MAA Reviews “The book is written as an accessible and engaging textbook, with many examples, historical notes, pithy quotes, commentary integrating the mate rial, exercises, open problems and an extensive bibliography.” — Zentralblatt MATH “This beautiful book presents, at a level suitable for advanced undergraduates, a fairly complete introduction to the problem of counting lattice points inside a convex polyhedron.” — Mathematical Reviews “Many departments recognize the need for capstone courses in which graduating students can see the tools they have acquired come together in some satisfying way. Beck and Robins have written the perfect text for such a course.” — CHOICE
Download or read book Combinatorics written by Marshall Hall and published by . This book was released on 1974 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Handbook of Combinatorics Volume 1 written by Ronald L. Graham and published by Elsevier. This book was released on 1995-12-11 with total page 1124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Combinatorics, Volume 1 focuses on basic methods, paradigms, results, issues, and trends across the broad spectrum of combinatorics. The selection first elaborates on the basic graph theory, connectivity and network flows, and matchings and extensions. Discussions focus on stable sets and claw free graphs, nonbipartite matching, multicommodity flows and disjoint paths, minimum cost circulations and flows, special proof techniques for paths and circuits, and Hamilton paths and circuits in digraphs. The manuscript then examines coloring, stable sets, and perfect graphs and embeddings and minors. The book takes a look at random graphs, hypergraphs, partially ordered sets, and matroids. Topics include geometric lattices, structural properties, linear extensions and correlation, dimension and posets of bounded degree, hypergraphs and set systems, stability, transversals, and matchings, and phase transition. The manuscript also reviews the combinatorial number theory, point lattices, convex polytopes and related complexes, and extremal problems in combinatorial geometry. The selection is a valuable reference for researchers interested in combinatorics.