Download or read book Combinatorial Mathematics Optimal Designs and Their Applications written by and published by Elsevier. This book was released on 2011-08-26 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorial Mathematics, Optimal Designs, and Their Applications
Download or read book Combinatorial Designs and their Applications written by Kathleen Quinn and published by CRC Press. This book was released on 1999-01-29 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fruit of a conference that gathered seven very active researchers in the field, Combinatorial Design and their Applications presents a wide but representative range of topics on the non-geometrical aspects of design theory. By concentrating on a few important areas, the authors succeed in providing greater detail in these areas in a more complete and accessible form. Through their contributions to this collection, they help fill a gap in the available combinatorics literature. The papers included in this volume cover recent developments in areas of current interest, such as difference sets, cryptography, and optimal linear codes. Researchers in combinatorics and other areas of pure mathematics, along with researchers in statistics and computer design will find in-depth, up-to-date discussions of design theory and the application of the theory to statistical design, codes, and cryptography.
Download or read book Combinatorial Mathematics and Its Applications written by Raj Chandra Bose and published by . This book was released on 1969 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Handbook of Combinatorial Designs written by C. J. Colbourn and published by Chapman and Hall/CRC. This book was released on 2006-11-02 with total page 1016 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continuing in the bestselling, informative tradition of the first edition, the Handbook of Combinatorial Designs, Second Edition remains the only resource to contain all of the most important results and tables in the field of combinatorial design. This handbook covers the constructions, properties, and applications of designs as well as existence results. Over 30% longer than the first edition, the book builds upon the groundwork of its predecessor while retaining the original contributors' expertise. The first part contains a brief introduction and history of the subject. The following parts focus on four main classes of combinatorial designs: balanced incomplete block designs, orthogonal arrays and Latin squares, pairwise balanced designs, and Hadamard and orthogonal designs. Closely connected to the preceding sections, the next part surveys 65 additional classes of designs, such as balanced ternary, factorial, graphical, Howell, quasi-symmetric, and spherical. The final part presents mathematical and computational background related to design theory. New to the Second Edition An introductory part that provides a general overview and a historical perspective of the area New chapters on the history of design theory, various codes, bent functions, and numerous types of designs Fully updated tables, including BIBDs, MOLS, PBDs, and Hadamard matrices Nearly 2,200 references in a single bibliographic section Meeting the need for up-to-date and accessible tabular and reference information, this handbook provides the tools to understand combinatorial design theory and applications that span the entire discipline. The author maintains a website with more information.
Download or read book Introduction to Combinatorics written by Walter D. Wallis and published by CRC Press. This book was released on 2016-12-12 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: What Is Combinatorics Anyway? Broadly speaking, combinatorics is the branch of mathematics dealing with different ways of selecting objects from a set or arranging objects. It tries to answer two major kinds of questions, namely, counting questions: how many ways can a selection or arrangement be chosen with a particular set of properties; and structural questions: does there exist a selection or arrangement of objects with a particular set of properties? The authors have presented a text for students at all levels of preparation. For some, this will be the first course where the students see several real proofs. Others will have a good background in linear algebra, will have completed the calculus stream, and will have started abstract algebra. The text starts by briefly discussing several examples of typical combinatorial problems to give the reader a better idea of what the subject covers. The next chapters explore enumerative ideas and also probability. It then moves on to enumerative functions and the relations between them, and generating functions and recurrences., Important families of functions, or numbers and then theorems are presented. Brief introductions to computer algebra and group theory come next. Structures of particular interest in combinatorics: posets, graphs, codes, Latin squares, and experimental designs follow. The authors conclude with further discussion of the interaction between linear algebra and combinatorics. Features Two new chapters on probability and posets. Numerous new illustrations, exercises, and problems. More examples on current technology use A thorough focus on accuracy Three appendices: sets, induction and proof techniques, vectors and matrices, and biographies with historical notes, Flexible use of MapleTM and MathematicaTM
Download or read book Algebraic And Geometric Combinatorics On Lattice Polytopes Proceedings Of The Summer Workshop On Lattice Polytopes written by Takayuki Hibi and published by World Scientific. This book was released on 2019-05-30 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of research papers and expository survey articles presented by the invited speakers of the Summer Workshop on Lattice Polytopes. Topics include enumerative, algebraic and geometric combinatorics on lattice polytopes, topological combinatorics, commutative algebra and toric varieties.Readers will find that this volume showcases current trends on lattice polytopes and stimulates further developments of many research areas surrounding this field. With the survey articles, research papers and open problems, this volume provides its fundamental materials for graduate students to learn and researchers to find exciting activities and avenues for further exploration on lattice polytopes.
Download or read book The Mathematical Coloring Book written by Alexander Soifer and published by Springer Science & Business Media. This book was released on 2008-10-13 with total page 619 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an exciting history of the discovery of Ramsey Theory, and contains new research along with rare photographs of the mathematicians who developed this theory, including Paul Erdös, B.L. van der Waerden, and Henry Baudet.
Download or read book Statistics for Spatial Data written by Noel Cressie and published by John Wiley & Sons. This book was released on 2015-03-18 with total page 931 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Wiley Classics Library consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. Spatial statistics — analyzing spatial data through statistical models — has proven exceptionally versatile, encompassing problems ranging from the microscopic to the astronomic. However, for the scientist and engineer faced only with scattered and uneven treatments of the subject in the scientific literature, learning how to make practical use of spatial statistics in day-to-day analytical work is very difficult. Designed exclusively for scientists eager to tap into the enormous potential of this analytical tool and upgrade their range of technical skills, Statistics for Spatial Data is a comprehensive, single-source guide to both the theory and applied aspects of spatial statistical methods. The hard-cover edition was hailed by Mathematical Reviews as an "excellent book which will become a basic reference." This paper-back edition of the 1993 edition, is designed to meet the many technological challenges facing the scientist and engineer. Concentrating on the three areas of geostatistical data, lattice data, and point patterns, the book sheds light on the link between data and model, revealing how design, inference, and diagnostics are an outgrowth of that link. It then explores new methods to reveal just how spatial statistical models can be used to solve important problems in a host of areas in science and engineering. Discussion includes: Exploratory spatial data analysis Spectral theory for stationary processes Spatial scale Simulation methods for spatial processes Spatial bootstrapping Statistical image analysis and remote sensing Computational aspects of model fitting Application of models to disease mapping Designed to accommodate the practical needs of the professional, it features a unified and common notation for its subject as well as many detailed examples woven into the text, numerous illustrations (including graphs that illuminate the theory discussed) and over 1,000 references. Fully balancing theory with applications, Statistics for Spatial Data, Revised Edition is an exceptionally clear guide on making optimal use of one of the ascendant analytical tools of the decade, one that has begun to capture the imagination of professionals in biology, earth science, civil, electrical, and agricultural engineering, geography, epidemiology, and ecology.
Download or read book Combinatorial Reciprocity Theorems written by Matthias Beck and published by American Mathematical Soc.. This book was released on 2018-12-12 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorial reciprocity is a very interesting phenomenon, which can be described as follows: A polynomial, whose values at positive integers count combinatorial objects of some sort, may give the number of combinatorial objects of a different sort when evaluated at negative integers (and suitably normalized). Such combinatorial reciprocity theorems occur in connections with graphs, partially ordered sets, polyhedra, and more. Using the combinatorial reciprocity theorems as a leitmotif, this book unfolds central ideas and techniques in enumerative and geometric combinatorics. Written in a friendly writing style, this is an accessible graduate textbook with almost 300 exercises, numerous illustrations, and pointers to the research literature. Topics include concise introductions to partially ordered sets, polyhedral geometry, and rational generating functions, followed by highly original chapters on subdivisions, geometric realizations of partially ordered sets, and hyperplane arrangements.
Download or read book Integer Points in Polyhedra Geometry Number Theory Algebra Optimization written by Alexander Barvinok and published by American Mathematical Soc.. This book was released on 2005 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: The AMS-IMS-SIAM Summer Research Conference on Integer Points in Polyhedra took place in Snowbird (UT). This proceedings volume contains original research and survey articles stemming from that event. Topics covered include commutative algebra, optimization, discrete geometry, statistics, representation theory, and symplectic geometry. The book is suitable for researchers and graduate students interested in combinatorial aspects of the above fields.
Download or read book Algorithms in Combinatorial Design Theory written by C.J. Colbourn and published by Elsevier. This book was released on 1985-01-01 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scope of the volume includes all algorithmic and computational aspects of research on combinatorial designs. Algorithmic aspects include generation, isomorphism and analysis techniques - both heuristic methods used in practice, and the computational complexity of these operations. The scope within design theory includes all aspects of block designs, Latin squares and their variants, pairwise balanced designs and projective planes and related geometries.
Download or read book Handbook of Convex Geometry written by Bozzano G Luisa and published by Elsevier. This book was released on 2014-06-28 with total page 803 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Convex Geometry, Volume A offers a survey of convex geometry and its many ramifications and relations with other areas of mathematics, including convexity, geometric inequalities, and convex sets. The selection first offers information on the history of convexity, characterizations of convex sets, and mixed volumes. Topics include elementary convexity, equality in the Aleksandrov-Fenchel inequality, mixed surface area measures, characteristic properties of convex sets in analysis and differential geometry, and extensions of the notion of a convex set. The text then reviews the standard isoperimetric theorem and stability of geometric inequalities. The manuscript takes a look at selected affine isoperimetric inequalities, extremum problems for convex discs and polyhedra, and rigidity. Discussions focus on include infinitesimal and static rigidity related to surfaces, isoperimetric problem for convex polyhedral, bounds for the volume of a convex polyhedron, curvature image inequality, Busemann intersection inequality and its relatives, and Petty projection inequality. The book then tackles geometric algorithms, convexity and discrete optimization, mathematical programming and convex geometry, and the combinatorial aspects of convex polytopes. The selection is a valuable source of data for mathematicians and researchers interested in convex geometry.
Download or read book Integer Points in Polyhedra Geometry Number Theory Representation Theory Algebra Optimization Statistics written by Matthias Beck and published by American Mathematical Soc.. This book was released on 2008 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The AMS-IMS-SIAM Joint Summer Research Conference "Integer Points in Polyhedra--Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics" was held in Snowbird, Utah in June 2006. This proceedings volume contains research and survey articles originating from the conference. The volume is a cross section of recent advances connected to lattice-point questions. Similar to the talks given at the conference, topics range from commutative algebra to optimization, from discrete geometry to statistics, from mirror symmetry to geometry of numbers. The book is suitable for researchers and graduate students interested in combinatorial aspects of the above fields." -- Back cover.
Download or read book Graphs and Order written by Ivan Rival and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 798 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the accounts of the principal survey papers presented at GRAPHS and ORDER, held at Banff, Canada from May 18 to May 31, 1984. This conference was supported by grants from the N.A.T.O. Advanced Study Institute programme, the Natural Sciences and Engineering Research Council of Canada and the University of Calgary. We are grateful for all of this considerable support. Almost fifty years ago the first Symposium on Lattice Theory was held in Charlottesville, U.S.A. On that occasion the principal lectures were delivered by G. Birkhoff, O. Ore and M.H. Stone. In those days the theory of ordered sets was thought to be a vigorous relative of group theory. Some twenty-five years ago the Symposium on Partially Ordered Sets and Lattice Theory was held in Monterey, U.S.A. Among the principal speakers at that meeting were R.P. Dilworth, B. Jonsson, A. Tarski and G. Birkhoff. Lattice theory had turned inward: it was concerned primarily with problems about lattices themselves. As a matter of fact the problems that were then posed have, by now, in many instances, been completely solved.
Download or read book Connections in Combinatorial Optimization written by András Frank and published by OUP Oxford. This book was released on 2011-02-24 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filling the gap between introductory and encyclopedic treatments, this book provides rich and appealing material for a second course in combinatorial optimization. This book is suitable for graduate students as well as a reference for established researchers.
Download or read book Handbook on Semidefinite Conic and Polynomial Optimization written by Miguel F. Anjos and published by Springer Science & Business Media. This book was released on 2011-11-19 with total page 955 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semidefinite and conic optimization is a major and thriving research area within the optimization community. Although semidefinite optimization has been studied (under different names) since at least the 1940s, its importance grew immensely during the 1990s after polynomial-time interior-point methods for linear optimization were extended to solve semidefinite optimization problems. Since the beginning of the 21st century, not only has research into semidefinite and conic optimization continued unabated, but also a fruitful interaction has developed with algebraic geometry through the close connections between semidefinite matrices and polynomial optimization. This has brought about important new results and led to an even higher level of research activity. This Handbook on Semidefinite, Conic and Polynomial Optimization provides the reader with a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization, and polynomial optimization. It contains a compendium of the recent research activity that has taken place in these thrilling areas, and will appeal to doctoral students, young graduates, and experienced researchers alike. The Handbook’s thirty-one chapters are organized into four parts: Theory, covering significant theoretical developments as well as the interactions between conic optimization and polynomial optimization; Algorithms, documenting the directions of current algorithmic development; Software, providing an overview of the state-of-the-art; Applications, dealing with the application areas where semidefinite and conic optimization has made a significant impact in recent years.
Download or read book Integers written by Bruce Landman and published by Walter de Gruyter GmbH & Co KG. This book was released on 2014-06-18 with total page 1092 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Integers" is a refereed online journal devoted to research in the area of combinatorial number theory. It publishes original research articles in combinatorics and number theory. Topics covered by the journal include additive number theory, multiplicative number theory, sequences and sets, extremal combinatorics, Ramsey theory, elementary number theory, classical combinatorial problems, hypergraphs, and probabilistic number theory. Integers also houses a combinatorial games section. This work presents all papers of the 2013 volume in book form.