Download or read book Combinatorial And Computational Mathematics Present And Future written by Ki Hang Kim and published by World Scientific. This book was released on 2001-06-19 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes and summarizes past work in important areas of combinatorics and computation, as well as gives directions for researchers working in these areas in the 21st century. It contains primarily survey papers and presents original research by Peter Fishburn, Jim Ho Kwak, Jaeun Lee, K H Kim, F W Roush and Susan Williams. The papers deal with some of the most exciting and promising developments in the areas of coding theory in relation to number theory, lattice theory and its applications, graph theory and its applications, topological techniques in combinatorics, symbolic dynamics and mathematical social science.
Download or read book Combinatorial and Computational Geometry written by Jacob E. Goodman and published by Cambridge University Press. This book was released on 2005-08-08 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 2005 book deals with interest topics in Discrete and Algorithmic aspects of Geometry.
Download or read book Combinatorial Mathematics written by Douglas B. West and published by Cambridge University Press. This book was released on 2021 with total page 990 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the most readable and thorough graduate textbook and reference for combinatorics, covering enumeration, graphs, sets, and methods.
Download or read book Combinatorics for Computer Science written by Stanley Gill Williamson and published by Courier Corporation. This book was released on 2002-01-01 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: Useful guide covers two major subdivisions of combinatorics — enumeration and graph theory — with emphasis on conceptual needs of computer science. Each part is divided into a "basic concepts" chapter emphasizing intuitive needs of the subject, followed by four "topics" chapters that explore these ideas in depth. Invaluable practical resource for graduate students, advanced undergraduates, and professionals with an interest in algorithm design and other aspects of computer science and combinatorics. References for Linear Order & for Graphs, Trees, and Recursions. 219 figures.
Download or read book Combinatorial Methods with Computer Applications written by Jonathan L. Gross and published by CRC Press. This book was released on 2016-04-19 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: This combinatorics text provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. It presents the computer and software algorithms in pseudo-code and incorporates definitions, theorems, proofs, examples, and nearly 300 illustrations as pedagogical elements of the exposition. Numerous problems, solutions, and hints reinforce basic skills and assist with creative problem solving. The author also offers a website with extensive graph theory informational resources as well as a computational engine to help with calculations for some of the exercises.
Download or read book Algebraic and Combinatorial Computational Biology written by Raina Robeva and published by Academic Press. This book was released on 2018-10-08 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic and Combinatorial Computational Biology introduces students and researchers to a panorama of powerful and current methods for mathematical problem-solving in modern computational biology. Presented in a modular format, each topic introduces the biological foundations of the field, covers specialized mathematical theory, and concludes by highlighting connections with ongoing research, particularly open questions. The work addresses problems from gene regulation, neuroscience, phylogenetics, molecular networks, assembly and folding of biomolecular structures, and the use of clustering methods in biology. A number of these chapters are surveys of new topics that have not been previously compiled into one unified source. These topics were selected because they highlight the use of technique from algebra and combinatorics that are becoming mainstream in the life sciences. - Integrates a comprehensive selection of tools from computational biology into educational or research programs - Emphasizes practical problem-solving through multiple exercises, projects and spinoff computational simulations - Contains scalable material for use in undergraduate and graduate-level classes and research projects - Introduces the reader to freely-available professional software - Supported by illustrative datasets and adaptable computer code
Download or read book Combinatorial Algebraic Topology written by Dimitry Kozlov and published by Springer Science & Business Media. This book was released on 2008-01-08 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.
Download or read book Analytic Combinatorics written by Philippe Flajolet and published by Cambridge University Press. This book was released on 2009-01-15 with total page 825 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.
Download or read book Integral Representation and the Computation of Combinatorial Sums written by G. P. Egorychev and published by American Mathematical Soc.. This book was released on 1984-12-31 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph should be of interest to a broad spectrum of readers: specialists in discrete and continuous mathematics, physicists, engineers, and others interested in computing sums and applying complex analysis in discrete mathematics. It contains investigations on the problem of finding integral representations for and computing finite and infinite sums (generating functions); these arise in practice in combinatorial analysis, the theory of algorithms and programming on a computer, probability theory, group theory, and function theory, as well as in physics and other areas of knowledge. A general approach is presented for computing sums and other expressions in closed form by reducing them to one-dimensional and multiple integrals, most often to contour integrals.
Download or read book Combinatorial And Global Optimization written by Rainer E Burkard and published by World Scientific. This book was released on 2002-04-05 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorial and global optimization problems appear in a wide range of applications in operations research, engineering, biological science, and computer science. In combinatorial optimization and graph theory, many approaches have been developed that link the discrete universe to the continuous universe through geometric, analytic, and algebraic techniques. Such techniques include global optimization formulations, semidefinite programming, and spectral theory. Recent major successes based on these approaches include interior point algorithms for linear and discrete problems, the celebrated Goemans-Williamson relaxation of the maximum cut problem, and the Du-Hwang solution of the Gilbert-Pollak conjecture. Since integer constraints are equivalent to nonconvex constraints, the fundamental difference between classes of optimization problems is not between discrete and continuous problems but between convex and nonconvex optimization problems. This volume is a selection of refereed papers based on talks presented at a conference on “Combinatorial and Global Optimization” held at Crete, Greece.
Download or read book Distributed Computing Through Combinatorial Topology written by Maurice Herlihy and published by Newnes. This book was released on 2013-11-30 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributed Computing Through Combinatorial Topology describes techniques for analyzing distributed algorithms based on award winning combinatorial topology research. The authors present a solid theoretical foundation relevant to many real systems reliant on parallelism with unpredictable delays, such as multicore microprocessors, wireless networks, distributed systems, and Internet protocols. Today, a new student or researcher must assemble a collection of scattered conference publications, which are typically terse and commonly use different notations and terminologies. This book provides a self-contained explanation of the mathematics to readers with computer science backgrounds, as well as explaining computer science concepts to readers with backgrounds in applied mathematics. The first section presents mathematical notions and models, including message passing and shared-memory systems, failures, and timing models. The next section presents core concepts in two chapters each: first, proving a simple result that lends itself to examples and pictures that will build up readers' intuition; then generalizing the concept to prove a more sophisticated result. The overall result weaves together and develops the basic concepts of the field, presenting them in a gradual and intuitively appealing way. The book's final section discusses advanced topics typically found in a graduate-level course for those who wish to explore further. - Named a 2013 Notable Computer Book for Computing Methodologies by Computing Reviews - Gathers knowledge otherwise spread across research and conference papers using consistent notations and a standard approach to facilitate understanding - Presents unique insights applicable to multiple computing fields, including multicore microprocessors, wireless networks, distributed systems, and Internet protocols - Synthesizes and distills material into a simple, unified presentation with examples, illustrations, and exercises
Download or read book Discrete and Combinatorial Mathematics written by Ralph P. Grimaldi and published by . This book was released on 2013-07-27 with total page 930 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fifth edition continues to improve on the features that have made it the market leader. The text offers a flexible organization, enabling instructors to adapt the book to their particular courses. The book is both complete and careful, and it continues to maintain its emphasis on algorithms and applications. Excellent exercise sets allow students to perfect skills as they practice. This new edition continues to feature numerous computer science applications-making this the ideal text for preparing students for advanced study.
Download or read book Combinatorial Scientific Computing written by Uwe Naumann and published by CRC Press. This book was released on 2012-01-25 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorial Scientific Computing explores the latest research on creating algorithms and software tools to solve key combinatorial problems on large-scale high-performance computing architectures. It includes contributions from international researchers who are pioneers in designing software and applications for high-performance computing systems. The book offers a state-of-the-art overview of the latest research, tool development, and applications. It focuses on load balancing and parallelization on high-performance computers, large-scale optimization, algorithmic differentiation of numerical simulation code, sparse matrix software tools, and combinatorial challenges and applications in large-scale social networks. The authors unify these seemingly disparate areas through a common set of abstractions and algorithms based on combinatorics, graphs, and hypergraphs. Combinatorial algorithms have long played a crucial enabling role in scientific and engineering computations and their importance continues to grow with the demands of new applications and advanced architectures. By addressing current challenges in the field, this volume sets the stage for the accelerated development and deployment of fundamental enabling technologies in high-performance scientific computing.
Download or read book Computational Discrete Mathematics written by Sriram Pemmaraju and published by Cambridge University Press. This book was released on 2009-10-15 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book was first published in 2003. Combinatorica, an extension to the popular computer algebra system Mathematica®, is the most comprehensive software available for teaching and research applications of discrete mathematics, particularly combinatorics and graph theory. This book is the definitive reference/user's guide to Combinatorica, with examples of all 450 Combinatorica functions in action, along with the associated mathematical and algorithmic theory. The authors cover classical and advanced topics on the most important combinatorial objects: permutations, subsets, partitions, and Young tableaux, as well as all important areas of graph theory: graph construction operations, invariants, embeddings, and algorithmic graph theory. In addition to being a research tool, Combinatorica makes discrete mathematics accessible in new and exciting ways to a wide variety of people, by encouraging computational experimentation and visualization. The book contains no formal proofs, but enough discussion to understand and appreciate all the algorithms and theorems it contains.
Download or read book Algorithms in Combinatorial Geometry written by Herbert Edelsbrunner and published by Springer Science & Business Media. This book was released on 1987-07-31 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational geometry as an area of research in its own right emerged in the early seventies of this century. Right from the beginning, it was obvious that strong connections of various kinds exist to questions studied in the considerably older field of combinatorial geometry. For example, the combinatorial structure of a geometric problem usually decides which algorithmic method solves the problem most efficiently. Furthermore, the analysis of an algorithm often requires a great deal of combinatorial knowledge. As it turns out, however, the connection between the two research areas commonly referred to as computa tional geometry and combinatorial geometry is not as lop-sided as it appears. Indeed, the interest in computational issues in geometry gives a new and con structive direction to the combinatorial study of geometry. It is the intention of this book to demonstrate that computational and com binatorial investigations in geometry are doomed to profit from each other. To reach this goal, I designed this book to consist of three parts, acorn binatorial part, a computational part, and one that presents applications of the results of the first two parts. The choice of the topics covered in this book was guided by my attempt to describe the most fundamental algorithms in computational geometry that have an interesting combinatorial structure. In this early stage geometric transforms played an important role as they reveal connections between seemingly unrelated problems and thus help to structure the field.
Download or read book Introduction to Combinatorics written by Walter D. Wallis and published by CRC Press. This book was released on 2016-12-12 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: What Is Combinatorics Anyway? Broadly speaking, combinatorics is the branch of mathematics dealing with different ways of selecting objects from a set or arranging objects. It tries to answer two major kinds of questions, namely, counting questions: how many ways can a selection or arrangement be chosen with a particular set of properties; and structural questions: does there exist a selection or arrangement of objects with a particular set of properties? The authors have presented a text for students at all levels of preparation. For some, this will be the first course where the students see several real proofs. Others will have a good background in linear algebra, will have completed the calculus stream, and will have started abstract algebra. The text starts by briefly discussing several examples of typical combinatorial problems to give the reader a better idea of what the subject covers. The next chapters explore enumerative ideas and also probability. It then moves on to enumerative functions and the relations between them, and generating functions and recurrences., Important families of functions, or numbers and then theorems are presented. Brief introductions to computer algebra and group theory come next. Structures of particular interest in combinatorics: posets, graphs, codes, Latin squares, and experimental designs follow. The authors conclude with further discussion of the interaction between linear algebra and combinatorics. Features Two new chapters on probability and posets. Numerous new illustrations, exercises, and problems. More examples on current technology use A thorough focus on accuracy Three appendices: sets, induction and proof techniques, vectors and matrices, and biographies with historical notes, Flexible use of MapleTM and MathematicaTM
Download or read book Mathematics and Computation written by Avi Wigderson and published by Princeton University Press. This book was released on 2019-10-29 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography