Download or read book Combinatoire et Representation du Groupe Symetrique written by D. Foata and published by Springer. This book was released on 2006-11-15 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Young Tableaux in Combinatorics Invariant Theory and Algebra written by Joseph P.S. Kung and published by Elsevier. This book was released on 2014-05-12 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Young Tableaux in Combinatorics, Invariant Theory, and Algebra: An Anthology of Recent Work is an anthology of papers on Young tableaux and their applications in combinatorics, invariant theory, and algebra. Topics covered include reverse plane partitions and tableau hook numbers; some partitions associated with a partially ordered set; frames and Baxter sequences; and Young diagrams and ideals of Pfaffians. Comprised of 16 chapters, this book begins by describing a probabilistic proof of a formula for the number f? of standard Young tableaux of a given shape f?. The reader is then introduced to the generating function of R. P. Stanley for reverse plane partitions on a tableau shape; an analog of Schensted's algorithm relating permutations and triples consisting of two shifted Young tableaux and a set; and a variational problem for random Young tableaux. Subsequent chapters deal with certain aspects of Schensted's construction and the derivation of the Littlewood-Richardson rule for the multiplication of Schur functions using purely combinatorial methods; monotonicity and unimodality of the pattern inventory; and skew-symmetric invariant theory. This volume will be helpful to students and practitioners of algebra.
Download or read book Crystal Bases Representations And Combinatorics written by Daniel Bump and published by World Scientific Publishing Company. This book was released on 2017-01-17 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book provides the first introduction to crystal base theory from the combinatorial point of view. Crystal base theory was developed by Kashiwara and Lusztig from the perspective of quantum groups. Its power comes from the fact that it addresses many questions in representation theory and mathematical physics by combinatorial means. This book approaches the subject directly from combinatorics, building crystals through local axioms (based on ideas by Stembridge) and virtual crystals. It also emphasizes parallels between the representation theory of the symmetric and general linear groups and phenomena in combinatorics. The combinatorial approach is linked to representation theory through the analysis of Demazure crystals. The relationship of crystals to tropical geometry is also explained.
Download or read book Combinatorial and Geometric Representation Theory written by Seok-Jin Kang and published by American Mathematical Soc.. This book was released on 2003 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the proceedings of the international conference on Combinatorial and Geometric Representation Theory. In the field of representation theory, a wide variety of mathematical ideas are providing new insights, giving powerful methods for understanding the theory, and presenting various applications to other branches of mathematics. Over the past two decades, there have been remarkable developments. This book explains the strong connections between combinatorics, geometry, and representation theory. It is suitable for graduate students and researchers interested in representation theory.
Download or read book American Mathematical Society Translations written by United States. Office of Naval Research and published by American Mathematical Soc.. This book was released on 2001-04-10 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles in this collection present new results in combinatorics, algebra, algebraic geometry, dynamical systems, analysis, and probability. Of particular interest is the survey article by A. N. Kirillov devoted to combinatorics of Young diagrams and related problems of representation theory. Also included are articles devoted to the eightieth birthday of renowned Russian mathematician, V. A. Rokhlin, ``Remembrances of V. A. Rokhlin'', by I. R. Shafarevich, and ``An Unfinished Project of V.A. Rokhlin'', by V. N. Sudakov. The results, ideas, and methods given in the book will be of interest to a broad range of specialists.
Download or read book Enumerative Combinatorics Volume 2 written by Richard P. Stanley and published by Cambridge University Press. This book was released on 2001-06-04 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction, suitable for beginning graduate students, showing connections to other areas of mathematics.
Download or read book Orders Description and Roles written by M. Pouzet and published by Elsevier. This book was released on 1984-01-01 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: Orders: Description and Roles
Download or read book Enumerative Combinatorics written by Richard Stanley and published by Cambridge University Press. This book was released on 2023-08-17 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: Revised second volume of the standard guide to enumerative combinatorics, including the theory of symmetric functions and 159 new exercises.
Download or read book Young Tableaux written by William Fulton and published by Cambridge University Press. This book was released on 1997 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes combinatorics involving Young tableaux and their uses in representation theory and algebraic geometry.
Download or read book Open Problems in Algebraic Combinatorics written by Christine Berkesch and published by American Mathematical Society. This book was released on 2024-08-21 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: In their preface, the editors describe algebraic combinatorics as the area of combinatorics concerned with exact, as opposed to approximate, results and which puts emphasis on interaction with other areas of mathematics, such as algebra, topology, geometry, and physics. It is a vibrant area, which saw several major developments in recent years. The goal of the 2022 conference Open Problems in Algebraic Combinatorics 2022 was to provide a forum for exchanging promising new directions and ideas. The current volume includes contributions coming from the talks at the conference, as well as a few other contributions written specifically for this volume. The articles cover the majority of topics in algebraic combinatorics with the aim of presenting recent important research results and also important open problems and conjectures encountered in this research. The editors hope that this book will facilitate the exchange of ideas in algebraic combinatorics.
Download or read book Representation Theory of Symmetric Groups written by Pierre-Loic Meliot and published by CRC Press. This book was released on 2017-05-12 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: Representation Theory of Symmetric Groups is the most up-to-date abstract algebra book on the subject of symmetric groups and representation theory. Utilizing new research and results, this book can be studied from a combinatorial, algorithmic or algebraic viewpoint. This book is an excellent way of introducing today’s students to representation theory of the symmetric groups, namely classical theory. From there, the book explains how the theory can be extended to other related combinatorial algebras like the Iwahori-Hecke algebra. In a clear and concise manner, the author presents the case that most calculations on symmetric group can be performed by utilizing appropriate algebras of functions. Thus, the book explains how some Hopf algebras (symmetric functions and generalizations) can be used to encode most of the combinatorial properties of the representations of symmetric groups. Overall, the book is an innovative introduction to representation theory of symmetric groups for graduate students and researchers seeking new ways of thought.
Download or read book Representation Theory written by Amritanshu Prasad and published by Cambridge University Press. This book was released on 2015-02-05 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the representation theory of symmetric groups, the theory of symmetric functions and the polynomial representation theory of general linear groups. The first chapter provides a detailed account of necessary representation-theoretic background. An important highlight of this book is an innovative treatment of the Robinson–Schensted–Knuth correspondence and its dual by extending Viennot's geometric ideas. Another unique feature is an exposition of the relationship between these correspondences, the representation theory of symmetric groups and alternating groups and the theory of symmetric functions. Schur algebras are introduced very naturally as algebras of distributions on general linear groups. The treatment of Schur–Weyl duality reveals the directness and simplicity of Schur's original treatment of the subject. In addition, each exercise is assigned a difficulty level to test readers' learning. Solutions and hints to most of the exercises are provided at the end.
Download or read book Surveys in Combinatorics written by E. Keith Lloyd and published by Cambridge University Press. This book was released on 1983-08-11 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the invited papers from the 1983 British Combinatorial Conference. Several distinguished mathematicians were invited to give a lecture and write a paper for the conference volume. The papers cover a broad range of combinatorial topics, including enumeration, finite geometries, graph theory and permanents.
Download or read book Symmetry Representation Theory and Its Applications written by Roger Howe and published by Springer. This book was released on 2015-01-04 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nolan Wallach's mathematical research is remarkable in both its breadth and depth. His contributions to many fields include representation theory, harmonic analysis, algebraic geometry, combinatorics, number theory, differential equations, Riemannian geometry, ring theory, and quantum information theory. The touchstone and unifying thread running through all his work is the idea of symmetry. This volume is a collection of invited articles that pay tribute to Wallach's ideas, and show symmetry at work in a large variety of areas. The articles, predominantly expository, are written by distinguished mathematicians and contain sufficient preliminary material to reach the widest possible audiences. Graduate students, mathematicians, and physicists interested in representation theory and its applications will find many gems in this volume that have not appeared in print elsewhere. Contributors: D. Barbasch, K. Baur, O. Bucicovschi, B. Casselman, D. Ciubotaru, M. Colarusso, P. Delorme, T. Enright, W.T. Gan, A Garsia, G. Gour, B. Gross, J. Haglund, G. Han, P. Harris, J. Hong, R. Howe, M. Hunziker, B. Kostant, H. Kraft, D. Meyer, R. Miatello, L. Ni, G. Schwarz, L. Small, D. Vogan, N. Wallach, J. Wolf, G. Xin, O. Yacobi.
Download or read book Representation Theory written by William Fulton and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary goal of these lectures is to introduce a beginner to the finite dimensional representations of Lie groups and Lie algebras. Since this goal is shared by quite a few other books, we should explain in this Preface how our approach differs, although the potential reader can probably see this better by a quick browse through the book. Representation theory is simple to define: it is the study of the ways in which a given group may act on vector spaces. It is almost certainly unique, however, among such clearly delineated subjects, in the breadth of its interest to mathematicians. This is not surprising: group actions are ubiquitous in 20th century mathematics, and where the object on which a group acts is not a vector space, we have learned to replace it by one that is {e. g. , a cohomology group, tangent space, etc. }. As a consequence, many mathematicians other than specialists in the field {or even those who think they might want to be} come in contact with the subject in various ways. It is for such people that this text is designed. To put it another way, we intend this as a book for beginners to learn from and not as a reference. This idea essentially determines the choice of material covered here. As simple as is the definition of representation theory given above, it fragments considerably when we try to get more specific.
Download or read book Handbook of Enumerative Combinatorics written by Miklos Bona and published by CRC Press. This book was released on 2015-03-24 with total page 1073 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting the state of the art, the Handbook of Enumerative Combinatorics brings together the work of today's most prominent researchers. The contributors survey the methods of combinatorial enumeration along with the most frequent applications of these methods.This important new work is edited by Miklos Bona of the University of Florida where he
Download or read book Combinatorics written by Nicholas Loehr and published by CRC Press. This book was released on 2017-08-10 with total page 849 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorics, Second Edition is a well-rounded, general introduction to the subjects of enumerative, bijective, and algebraic combinatorics. The textbook emphasizes bijective proofs, which provide elegant solutions to counting problems by setting up one-to-one correspondences between two sets of combinatorial objects. The author has written the textbook to be accessible to readers without any prior background in abstract algebra or combinatorics. Part I of the second edition develops an array of mathematical tools to solve counting problems: basic counting rules, recursions, inclusion-exclusion techniques, generating functions, bijective proofs, and linear algebraic methods. These tools are used to analyze combinatorial structures such as words, permutations, subsets, functions, graphs, trees, lattice paths, and much more. Part II cover topics in algebraic combinatorics including group actions, permutation statistics, symmetric functions, and tableau combinatorics. This edition provides greater coverage of the use of ordinary and exponential generating functions as a problem-solving tool. Along with two new chapters, several new sections, and improved exposition throughout, the textbook is brimming with many examples and exercises of various levels of difficulty.