Download or read book Combinatorics and Finite Geometry written by Steven T. Dougherty and published by Springer Nature. This book was released on 2020-10-30 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This undergraduate textbook is suitable for introductory classes in combinatorics and related topics. The book covers a wide range of both pure and applied combinatorics, beginning with the very basics of enumeration and then going on to Latin squares, graphs and designs. The latter topic is closely related to finite geometry, which is developed in parallel. Applications to probability theory, algebra, coding theory, cryptology and combinatorial game theory comprise the later chapters. Throughout the book, examples and exercises illustrate the material, and the interrelations between the various topics is emphasized. Readers looking to take first steps toward the study of combinatorics, finite geometry, design theory, coding theory, or cryptology will find this book valuable. Essentially self-contained, there are very few prerequisites aside from some mathematical maturity, and the little algebra required is covered in the text. The book is also a valuable resource for anyone interested in discrete mathematics as it ties together a wide variety of topics.
Download or read book Finite Geometry and Character Theory written by Alexander Pott and published by Springer. This book was released on 2006-11-14 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: Difference sets are of central interest in finite geometry and design theory. One of the main techniques to investigate abelian difference sets is a discrete version of the classical Fourier transform (i.e., character theory) in connection with algebraic number theory. This approach is described using only basic knowledge of algebra and algebraic number theory. It contains not only most of our present knowledge about abelian difference sets, but also gives applications of character theory to projective planes with quasiregular collineation groups. Therefore, the book is of interest both to geometers and mathematicians working on difference sets. Moreover, the Fourier transform is important in more applied branches of discrete mathematics such as coding theory and shift register sequences.
Download or read book Projective Geometries Over Finite Fields written by James William Peter Hirschfeld and published by Oxford University Press on Demand. This book was released on 1998 with total page 555 pages. Available in PDF, EPUB and Kindle. Book excerpt: I. Introduction 1. Finite fields 2. Projective spaces and algebraic varieties II. Elementary general properties 3. Subspaces 4. Partitions 5. Canonical forms for varieties and polarities III. The line and the plane 6. The line 7. First properties of the plane 8. Ovals 9. Arithmetic of arcs of degree two 10. Arcs in ovals 11. Cubic curves 12. Arcs of higher degree 13. Blocking sets 14. Small planes Appendix Notation References.
Download or read book Combinatorics of Finite Geometries written by Lynn Margaret Batten and published by Cambridge University Press. This book was released on 1997-05-28 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thoroughly revised and updated, with an entirely new chapter on blocking sets in linear spaces.
Download or read book Error Correcting Codes Finite Geometries and Cryptography written by Aiden A. Bruen and published by American Mathematical Soc.. This book was released on 2010-09-03 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This interdisciplinary volume contains papers from both a conference and special session on Error-Control Codes, Information Theory and Applied Cryptography. The conference was held at the Fields Institute in Toronto, On, Canada from December 5-6, 2007, and the special session was held at the Canadian Mathematical Society's winter meeting in London, ON, Canada from December 8-10, 2007. The volume features cutting-edge theoretical results on the Reed-Muller and Reed-Solomon codes, classical linear codes, codes from nets and block designs, LDPC codes, perfect quantum and orthogonal codes, iterative decoding, magnetic storage and digital memory devices, and MIMO channels. There are new contributions on privacy reconciliation, resilient functions, cryptographic hash functions, and new work on quantum coins. Related original work in finite geometries concerns two-weight codes coming from partial spreads, (0, 1) matrices with forbidden configurations, Andre embeddings, and representations of projective spaces in affine planes. Great care has been taken to ensure that high expository standards are met by the papers in this volume. Accordingly, the papers are written in a user-friendly format. The hope is that this volume will be of interst and of benefit both to the experienced and to newcomers alike.
Download or read book General Galois Geometries written by James Hirschfeld and published by Springer. This book was released on 2016-02-03 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the second edition of the third and last volume of a treatise on projective spaces over a finite field, also known as Galois geometries. This volume completes the trilogy comprised of plane case (first volume) and three dimensions (second volume). This revised edition includes much updating and new material. It is a mostly self-contained study of classical varieties over a finite field, related incidence structures and particular point sets in finite n-dimensional projective spaces. General Galois Geometries is suitable for PhD students and researchers in combinatorics and geometry. The separate chapters can be used for courses at postgraduate level.
Download or read book Algebraic Geometry Codes Advanced Chapters written by Michael Tsfasman and published by American Mathematical Soc.. This book was released on 2019-07-02 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic Geometry Codes: Advanced Chapters is devoted to the theory of algebraic geometry codes, a subject related to local_libraryBook Catalogseveral domains of mathematics. On one hand, it involves such classical areas as algebraic geometry and number theory; on the other, it is connected to information transmission theory, combinatorics, finite geometries, dense packings, and so on. The book gives a unique perspective on the subject. Whereas most books on coding theory start with elementary concepts and then develop them in the framework of coding theory itself within, this book systematically presents meaningful and important connections of coding theory with algebraic geometry and number theory. Among many topics treated in the book, the following should be mentioned: curves with many points over finite fields, class field theory, asymptotic theory of global fields, decoding, sphere packing, codes from multi-dimensional varieties, and applications of algebraic geometry codes. The book is the natural continuation of Algebraic Geometric Codes: Basic Notions by the same authors. The concise exposition of the first volume is included as an appendix.
Download or read book Algebraic Geometry in Coding Theory and Cryptography written by Harald Niederreiter and published by Princeton University Press. This book was released on 2009-09-21 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook equips graduate students and advanced undergraduates with the necessary theoretical tools for applying algebraic geometry to information theory, and it covers primary applications in coding theory and cryptography. Harald Niederreiter and Chaoping Xing provide the first detailed discussion of the interplay between nonsingular projective curves and algebraic function fields over finite fields. This interplay is fundamental to research in the field today, yet until now no other textbook has featured complete proofs of it. Niederreiter and Xing cover classical applications like algebraic-geometry codes and elliptic-curve cryptosystems as well as material not treated by other books, including function-field codes, digital nets, code-based public-key cryptosystems, and frameproof codes. Combining a systematic development of theory with a broad selection of real-world applications, this is the most comprehensive yet accessible introduction to the field available. Introduces graduate students and advanced undergraduates to the foundations of algebraic geometry for applications to information theory Provides the first detailed discussion of the interplay between projective curves and algebraic function fields over finite fields Includes applications to coding theory and cryptography Covers the latest advances in algebraic-geometry codes Features applications to cryptography not treated in other books
Download or read book Advances In Algebraic Geometry Codes written by Edgar Martinez-moro and published by World Scientific. This book was released on 2008-10-08 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Algebraic Geometry Codes presents the most successful applications of algebraic geometry to the field of error-correcting codes, which are used in the industry when one sends information through a noisy channel. The noise in a channel is the corruption of a part of the information due to either interferences in the telecommunications or degradation of the information-storing support (for instance, compact disc). An error-correcting code thus adds extra information to the message to be transmitted with the aim of recovering the sent information. With contributions from renowned researchers, this pioneering book will be of value to mathematicians, computer scientists, and engineers in information theory.
Download or read book Algebraic Curves over a Finite Field written by J. W. P. Hirschfeld and published by Princeton University Press. This book was released on 2013-03-25 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible and self-contained introduction to the theory of algebraic curves over a finite field, a subject that has been of fundamental importance to mathematics for many years and that has essential applications in areas such as finite geometry, number theory, error-correcting codes, and cryptology. Unlike other books, this one emphasizes the algebraic geometry rather than the function field approach to algebraic curves. The authors begin by developing the general theory of curves over any field, highlighting peculiarities occurring for positive characteristic and requiring of the reader only basic knowledge of algebra and geometry. The special properties that a curve over a finite field can have are then discussed. The geometrical theory of linear series is used to find estimates for the number of rational points on a curve, following the theory of Stöhr and Voloch. The approach of Hasse and Weil via zeta functions is explained, and then attention turns to more advanced results: a state-of-the-art introduction to maximal curves over finite fields is provided; a comprehensive account is given of the automorphism group of a curve; and some applications to coding theory and finite geometry are described. The book includes many examples and exercises. It is an indispensable resource for researchers and the ideal textbook for graduate students.
Download or read book The Mathematical Theory of Coding written by Ian F. Blake and published by Academic Press. This book was released on 2014-05-10 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Mathematical Theory of Coding focuses on the application of algebraic and combinatoric methods to the coding theory, including linear transformations, vector spaces, and combinatorics. The publication first offers information on finite fields and coding theory and combinatorial constructions and coding. Discussions focus on self-dual and quasicyclic codes, quadratic residues and codes, balanced incomplete block designs and codes, bounds on code dictionaries, code invariance under permutation groups, and linear transformations of vector spaces over finite fields. The text then takes a look at coding and combinatorics and the structure of semisimple rings. Topics include structure of cyclic codes and semisimple rings, group algebra and group characters, rings, ideals, and the minimum condition, chains and chain groups, dual chain groups, and matroids, graphs, and coding. The book ponders on group representations and group codes for the Gaussian channel, including distance properties of group codes, initial vector problem, modules, group algebras, andrepresentations, orthogonality relationships and properties of group characters, and representation of groups. The manuscript is a valuable source of data for mathematicians and researchers interested in the mathematical theory of coding.
Download or read book Algebraic Geometry for Coding Theory and Cryptography written by Everett W. Howe and published by Springer. This book was released on 2017-11-15 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering topics in algebraic geometry, coding theory, and cryptography, this volume presents interdisciplinary group research completed for the February 2016 conference at the Institute for Pure and Applied Mathematics (IPAM) in cooperation with the Association for Women in Mathematics (AWM). The conference gathered research communities across disciplines to share ideas and problems in their fields and formed small research groups made up of graduate students, postdoctoral researchers, junior faculty, and group leaders who designed and led the projects. Peer reviewed and revised, each of this volume's five papers achieves the conference’s goal of using algebraic geometry to address a problem in either coding theory or cryptography. Proposed variants of the McEliece cryptosystem based on different constructions of codes, constructions of locally recoverable codes from algebraic curves and surfaces, and algebraic approaches to the multicast network coding problem are only some of the topics covered in this volume. Researchers and graduate-level students interested in the interactions between algebraic geometry and both coding theory and cryptography will find this volume valuable.
Download or read book Finite Geometry and Combinatorial Applications written by Simeon Ball and published by Cambridge University Press. This book was released on 2015-07-02 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: A graduate-level introduction to finite geometry and its applications to other areas of combinatorics.
Download or read book Projective Geometry written by Albrecht Beutelspacher and published by Cambridge University Press. This book was released on 1998-01-29 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Projective geometry is not only a jewel of mathematics, but has also many applications in modern information and communication science. This book presents the foundations of classical projective and affine geometry as well as its important applications in coding theory and cryptography. It also could serve as a first acquaintance with diagram geometry. Written in clear and contemporary language with an entertaining style and around 200 exercises, examples and hints, this book is ideally suited to be used as a textbook for study in the classroom or on its own.
Download or read book Algebraic Geometric Codes written by M. Tsfasman and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'Et moi ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d' etre of this series.
Download or read book Algebraic Function Fields and Codes written by Henning Stichtenoth and published by Springer Science & Business Media. This book was released on 2009-02-11 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book links two subjects: algebraic geometry and coding theory. It uses a novel approach based on the theory of algebraic function fields. Coverage includes the Riemann-Rock theorem, zeta functions and Hasse-Weil's theorem as well as Goppa' s algebraic-geometric codes and other traditional codes. It will be useful to researchers in algebraic geometry and coding theory and computer scientists and engineers in information transmission.
Download or read book Geometries written by Alekseĭ Bronislavovich Sosinskiĭ and published by American Mathematical Soc.. This book was released on 2012 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms ``toy geometries'', the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivered at the Independent University of Moscow in 2003 and 2006. It is by no means a formal algebraic or analytic treatment of geometric topics, but rather, a highly visual exposition containing upwards of 200 illustrations. The reader is expected to possess a familiarity with elementary Euclidean geometry, albeit those lacking this knowledge may refer to a compendium in Chapter 0. Per the author's predilection, the book contains very little regarding the axiomatic approach to geometry (save for a single chapter on the history of non-Euclidean geometry), but two Appendices provide a detailed treatment of Euclid's and Hilbert's axiomatics. Perhaps the most important aspect of this course is the problems, which appear at the end of each chapter and are supplemented with answers at the conclusion of the text. By analyzing and solving these problems, the reader will become capable of thinking and working geometrically, much more so than by simply learning the theory. Ultimately, the author makes the distinction between concrete mathematical objects called ``geometries'' and the singular ``geometry'', which he understands as a way of thinking about mathematics. Although the book does not address branches of mathematics and mathematical physics such as Riemannian and Kahler manifolds or, say, differentiable manifolds and conformal field theories, the ideology of category language and transformation groups on which the book is based prepares the reader for the study of, and eventually, research in these important and rapidly developing areas of contemporary mathematics.