EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Clustering  Classification  and Time Series Prediction by Using Artificial Neural Networks

Download or read book Clustering Classification and Time Series Prediction by Using Artificial Neural Networks written by Patricia Melin and published by Springer Nature. This book was released on with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Time Series Clustering and Classification

Download or read book Time Series Clustering and Classification written by Elizabeth Ann Maharaj and published by CRC Press. This book was released on 2019-03-19 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: The beginning of the age of artificial intelligence and machine learning has created new challenges and opportunities for data analysts, statisticians, mathematicians, econometricians, computer scientists and many others. At the root of these techniques are algorithms and methods for clustering and classifying different types of large datasets, including time series data. Time Series Clustering and Classification includes relevant developments on observation-based, feature-based and model-based traditional and fuzzy clustering methods, feature-based and model-based classification methods, and machine learning methods. It presents a broad and self-contained overview of techniques for both researchers and students. Features Provides an overview of the methods and applications of pattern recognition of time series Covers a wide range of techniques, including unsupervised and supervised approaches Includes a range of real examples from medicine, finance, environmental science, and more R and MATLAB code, and relevant data sets are available on a supplementary website

Book R and Data Mining

    Book Details:
  • Author : Yanchang Zhao
  • Publisher : Academic Press
  • Release : 2012-12-31
  • ISBN : 012397271X
  • Pages : 251 pages

Download or read book R and Data Mining written by Yanchang Zhao and published by Academic Press. This book was released on 2012-12-31 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: R and Data Mining introduces researchers, post-graduate students, and analysts to data mining using R, a free software environment for statistical computing and graphics. The book provides practical methods for using R in applications from academia to industry to extract knowledge from vast amounts of data. Readers will find this book a valuable guide to the use of R in tasks such as classification and prediction, clustering, outlier detection, association rules, sequence analysis, text mining, social network analysis, sentiment analysis, and more.Data mining techniques are growing in popularity in a broad range of areas, from banking to insurance, retail, telecom, medicine, research, and government. This book focuses on the modeling phase of the data mining process, also addressing data exploration and model evaluation.With three in-depth case studies, a quick reference guide, bibliography, and links to a wealth of online resources, R and Data Mining is a valuable, practical guide to a powerful method of analysis. - Presents an introduction into using R for data mining applications, covering most popular data mining techniques - Provides code examples and data so that readers can easily learn the techniques - Features case studies in real-world applications to help readers apply the techniques in their work

Book Clustering  Classification  and Time Series Prediction by using Artificial Neural Networks

Download or read book Clustering Classification and Time Series Prediction by using Artificial Neural Networks written by Patricia Melin and published by Springer. This book was released on 2024-10-21 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a new model for clustering, classification, and time series prediction by using artificial neural networks to computationally simulate the behavior of the cognitive functions of the brain is presented. This model focuses on the study of intelligent hybrid neural systems and their use in time series analysis and decision support systems. Therefore, through the development of eight case studies, multiple time series related to the following problems are analyzed: traffic accidents, air quality and multiple global indicators (energy consumption, birth rate, mortality rate, population growth, inflation, unemployment, sustainable development, and quality of life). The main contribution consists of a Generalized Type-2 fuzzy integration of multiple indicators (time series) using both supervised and unsupervised neural networks and a set of Type-1, Interval Type-2, and Generalized Type-2 fuzzy systems. The obtained results show the advantages of the proposed model of Generalized Type-2 fuzzy integration of multiple time series attributes. This book is intended to be a reference for scientists and engineers interested in applying type-2 fuzzy logic techniques for solving problems in classification and prediction. We consider that this book can also be used to get novel ideas for new lines of research, or to continue the lines of research proposed by the authors of the book.

Book Adaptive and Natural Computing Algorithms

Download or read book Adaptive and Natural Computing Algorithms written by Mikko Kolehmainen and published by Springer Science & Business Media. This book was released on 2009-10-15 with total page 645 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-proceedings of the 9th International Conference on Adaptive and Natural Computing Algorithms, ICANNGA 2009, held in Kuopio, Finland, in April 2009. The 63 revised full papers presented were carefully reviewed and selected from a total of 112 submissions. The papers are organized in topical sections on neutral networks, evolutionary computation, learning, soft computing, bioinformatics as well as applications.

Book Grouping Multidimensional Data

Download or read book Grouping Multidimensional Data written by Jacob Kogan and published by Taylor & Francis. This book was released on 2006-02-10 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher description

Book Research Anthology on Artificial Neural Network Applications

Download or read book Research Anthology on Artificial Neural Network Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2021-07-16 with total page 1575 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial neural networks (ANNs) present many benefits in analyzing complex data in a proficient manner. As an effective and efficient problem-solving method, ANNs are incredibly useful in many different fields. From education to medicine and banking to engineering, artificial neural networks are a growing phenomenon as more realize the plethora of uses and benefits they provide. Due to their complexity, it is vital for researchers to understand ANN capabilities in various fields. The Research Anthology on Artificial Neural Network Applications covers critical topics related to artificial neural networks and their multitude of applications in a number of diverse areas including medicine, finance, operations research, business, social media, security, and more. Covering everything from the applications and uses of artificial neural networks to deep learning and non-linear problems, this book is ideal for computer scientists, IT specialists, data scientists, technologists, business owners, engineers, government agencies, researchers, academicians, and students, as well as anyone who is interested in learning more about how artificial neural networks can be used across a wide range of fields.

Book Proceedings of the International Conference on Cognitive and Intelligent Computing

Download or read book Proceedings of the International Conference on Cognitive and Intelligent Computing written by Amit Kumar and published by Springer Nature. This book was released on 2023-01-01 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents original, peer-reviewed select articles from the International Conference on Cognitive & Intelligent Computing (ICCIC – 2021), held on December 11–12, 2021, at Hyderabad, India. The proceedings has cutting edge Research outcome related to Machine learning in control applications, Soft computing, Pattern Recognition, Decision Support Systems, Text analytics and NLP, Statistical Learning, Neural Network Learning, Learning Through Fuzzy Logic, Learning Through Evolution (Evolutionary Algorithms), Reinforcement Learning, Multi-Strategy Learning, Cooperative Learning, Planning And Learning, Multi-Agent Learning, Online And Incremental Learning, Scalability Of Learning Algorithms, Inductive Learning, Inductive Logic Programming, Bayesian Networks, Support Vector Machines, Case-Based Reasoning, Multi-Agent Systems, Human–Computer Interaction, Data Mining and Knowledge Discovery, Knowledge Management and Networks, Data Intensive Computing Architecture, Medicine, Health, Bioinformatics, and Systems Biology, Industrial and Engineering Applications, Security Applications, Smart Cities, Game Playing and Problem Solving, Intelligent Virtual Environments, Economics, Business, And Forecasting Applications. Articles in the book are carefully selected on the basis of their application orientation. The content is expected to be especially useful for Professionals, Researchers, Research students working in the area of cognitive and intelligent computing.

Book Proceedings of the 5th International Conference on Data Science  Machine Learning and Applications  Volume 2

Download or read book Proceedings of the 5th International Conference on Data Science Machine Learning and Applications Volume 2 written by Amit Kumar and published by Springer Nature. This book was released on with total page 1425 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Deep Learning for Time Series Forecasting

Download or read book Deep Learning for Time Series Forecasting written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2018-08-30 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning methods offer a lot of promise for time series forecasting, such as the automatic learning of temporal dependence and the automatic handling of temporal structures like trends and seasonality. With clear explanations, standard Python libraries, and step-by-step tutorial lessons you’ll discover how to develop deep learning models for your own time series forecasting projects.

Book Modeling Complex Systems

    Book Details:
  • Author : Nino Boccara
  • Publisher : Springer Science & Business Media
  • Release : 2010-09-09
  • ISBN : 1441965629
  • Pages : 490 pages

Download or read book Modeling Complex Systems written by Nino Boccara and published by Springer Science & Business Media. This book was released on 2010-09-09 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book illustrates how models of complex systems are built up and provides indispensable mathematical tools for studying their dynamics. This second edition includes more recent research results and many new and improved worked out examples and exercises.

Book Artificial Neural Networks and Machine Learning     ICANN 2019  Text and Time Series

Download or read book Artificial Neural Networks and Machine Learning ICANN 2019 Text and Time Series written by Igor V. Tetko and published by Springer Nature. This book was released on 2019-09-09 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings set LNCS 11727, 11728, 11729, 11730, and 11731 constitute the proceedings of the 28th International Conference on Artificial Neural Networks, ICANN 2019, held in Munich, Germany, in September 2019. The total of 277 full papers and 43 short papers presented in these proceedings was carefully reviewed and selected from 494 submissions. They were organized in 5 volumes focusing on theoretical neural computation; deep learning; image processing; text and time series; and workshop and special sessions.

Book Deep Learning with Python

Download or read book Deep Learning with Python written by Francois Chollet and published by Simon and Schuster. This book was released on 2017-11-30 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance

Book Research in Multidisciplinary Subjects  Volume 8

Download or read book Research in Multidisciplinary Subjects Volume 8 written by Chief Editor- Biplab Auddya, Editor- Ms. Shalini Khurana, Dr. S. Therasa, Samrat Sikder, Dr. Akhileshwar Rai and published by The Hill Publication. This book was released on 2023-10-09 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Proceedings of International Conference on Big Data  Machine Learning and their Applications

Download or read book Proceedings of International Conference on Big Data Machine Learning and their Applications written by Shailesh Tiwari and published by Springer Nature. This book was released on 2020-12-22 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains high-quality peer-reviewed papers of the International Conference on Big Data, Machine Learning and their Applications (ICBMA 2019) held at Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India, during 29–31 May 2020. The book provides significant contributions in a structured way so that prospective readers can understand how these techniques are used in finding solutions to complex engineering problems. The book covers the areas of big data, machine learning, bio-inspired algorithms, artificial intelligence and their applications.

Book Soft Computing for Knowledge Discovery and Data Mining

Download or read book Soft Computing for Knowledge Discovery and Data Mining written by Oded Maimon and published by Springer Science & Business Media. This book was released on 2007-10-25 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining is the science and technology of exploring large and complex bodies of data in order to discover useful patterns. It is extremely important because it enables modeling and knowledge extraction from abundant data availability. This book introduces soft computing methods extending the envelope of problems that data mining can solve efficiently. It presents practical soft-computing approaches in data mining and includes various real-world case studies with detailed results.

Book Machine Learning and the Internet of Things in Education

Download or read book Machine Learning and the Internet of Things in Education written by John Bush Idoko and published by Springer Nature. This book was released on 2023-09-30 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed to provide rich research hub for researchers, teachers, and students to ease research hassle/challenges. The book is rich and comprehensive enough to provide answers to frequently asked research questions because the content of the book touches several disciplines cutting across computing, engineering, medicine, education, and sciences in general. The rich multidisciplinary contents of the book promise to leave all users satisfied. The valuable features in the book include but not limited to: demonstration of mathematical expressions for implementation of machine learning models, integration of learning techniques, and projection of future AI and IoT technologies. These technologies will enable systems to be simulative, predictive, and self-operating smart systems. The primary audience of the book include but not limited to researchers, teachers, and postgraduate and undergraduate students in computing, engineering, medicine, education, and science fields.