Download or read book Cluster Algebras and Poisson Geometry written by Michael Gekhtman and published by American Mathematical Soc.. This book was released on 2010 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book devoted to cluster algebras, this work contains chapters on Poisson geometry and Schubert varieties; an introduction to cluster algebras and their main properties; and geometric aspects of the cluster algebra theory, in particular on its relations to Poisson geometry and to the theory of integrable systems.
Download or read book Algebraic Geometry and Number Theory written by victor ginzburg and published by Springer Science & Business Media. This book was released on 2007-12-31 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book represents a collection of invited papers by outstanding mathematicians in algebra, algebraic geometry, and number theory dedicated to Vladimir Drinfeld. Original research articles reflect the range of Drinfeld's work, and his profound contributions to the Langlands program, quantum groups, and mathematical physics are paid particular attention. These ten original articles by prominent mathematicians, dedicated to Drinfeld on the occasion of his 50th birthday, broadly reflect the range of Drinfeld's own interests in algebra, algebraic geometry, and number theory.
Download or read book Lecture Notes on Cluster Algebras written by Robert J. Marsh and published by Erich Schmidt Verlag GmbH & Co. KG. This book was released on 2013 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cluster algebras are combinatorially defined commutative algebras which were introduced by S. Fomin and A. Zelevinsky as a tool for studying the dual canonical basis of a quantized enveloping algebra and totally positive matrices. The aim of these notes is to give an introduction to cluster algebras which is accessible to graduate students or researchers interested in learning more about the field while giving a taste of the wide connections between cluster algebras and other areas of mathematics. The approach taken emphasizes combinatorial and geometric aspects of cluster algebras. Cluster algebras of finite type are classified by the Dynkin diagrams, so a short introduction to reflection groups is given in order to describe this and the corresponding generalized associahedra. A discussion of cluster algebra periodicity, which has a close relationship with discrete integrable systems, is included. This book ends with a description of the cluster algebras of finite mutation type and the cluster structure of the homogeneous coordinate ring of the Grassmannian, both of which have a beautiful description in terms of combinatorial geometry.
Download or read book Cluster Algebras and Triangulated Surfaces Part II Lambda Lengths written by Sergey Fomin and published by American Mathematical Soc.. This book was released on 2018-10-03 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: For any cluster algebra whose underlying combinatorial data can be encoded by a bordered surface with marked points, the authors construct a geometric realization in terms of suitable decorated Teichmüller space of the surface. On the geometric side, this requires opening the surface at each interior marked point into an additional geodesic boundary component. On the algebraic side, it relies on the notion of a non-normalized cluster algebra and the machinery of tropical lambda lengths. The authors' model allows for an arbitrary choice of coefficients which translates into a choice of a family of integral laminations on the surface. It provides an intrinsic interpretation of cluster variables as renormalized lambda lengths of arcs on the surface. Exchange relations are written in terms of the shear coordinates of the laminations and are interpreted as generalized Ptolemy relations for lambda lengths. This approach gives alternative proofs for the main structural results from the authors' previous paper, removing unnecessary assumptions on the surface.
Download or read book Lectures on Poisson Geometry written by Marius Crainic and published by American Mathematical Soc.. This book was released on 2021-10-14 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: This excellent book will be very useful for students and researchers wishing to learn the basics of Poisson geometry, as well as for those who know something about the subject but wish to update and deepen their knowledge. The authors' philosophy that Poisson geometry is an amalgam of foliation theory, symplectic geometry, and Lie theory enables them to organize the book in a very coherent way. —Alan Weinstein, University of California at Berkeley This well-written book is an excellent starting point for students and researchers who want to learn about the basics of Poisson geometry. The topics covered are fundamental to the theory and avoid any drift into specialized questions; they are illustrated through a large collection of instructive and interesting exercises. The book is ideal as a graduate textbook on the subject, but also for self-study. —Eckhard Meinrenken, University of Toronto
Download or read book Quantum Algebras and Poisson Geometry in Mathematical Physics written by Mikhail Vladimirovich Karasev and published by American Mathematical Soc.. This book was released on 2005 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents applications of Poisson geometry to some fundamental well-known problems in mathematical physics. This volume is suitable for graduate students and researchers interested in mathematical physics. It uses methods such as: unexpected algebras with non-Lie commutation relations, dynamical systems theory, and semiclassical asymptotics.
Download or read book Cluster Algebra Structures on Poisson Nilpotent Algebras written by K. R Goodearl and published by American Mathematical Society. This book was released on 2023-11-27 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: View the abstract.
Download or read book Interactions of Quantum Affine Algebras with Cluster Algebras Current Algebras and Categorification written by Jacob Greenstein and published by Springer Nature. This book was released on 2022-03-11 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects chapters that examine representation theory as connected with affine Lie algebras and their quantum analogues, in celebration of the impact Vyjayanthi Chari has had on this area. The opening chapters are based on mini-courses given at the conference “Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification”, held on the occasion of Chari’s 60th birthday at the Catholic University of America in Washington D.C., June 2018. The chapters that follow present a broad view of the area, featuring surveys, original research, and an overview of Vyjayanthi Chari’s significant contributions. Written by distinguished experts in representation theory, a range of topics are covered, including: String diagrams and categorification Quantum affine algebras and cluster algebras Steinberg groups for Jordan pairs Dynamical quantum determinants and Pfaffians Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification will be an ideal resource for researchers in the fields of representation theory and mathematical physics.
Download or read book Quantum Cluster Algebra Structures on Quantum Nilpotent Algebras written by K. R. Goodearl and published by American Mathematical Soc.. This book was released on 2017-04-25 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts
Download or read book Symmetries and Integrability of Difference Equations written by Decio Levi and published by Springer. This book was released on 2017-06-30 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference equations. Difference equations are playing an increasingly important role in the natural sciences. Indeed, many phenomena are inherently discrete and thus naturally described by difference equations. More fundamentally, in subatomic physics, space-time may actually be discrete. Differential equations would then just be approximations of more basic discrete ones. Moreover, when using differential equations to analyze continuous processes, it is often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference ones. Each of the nine peer-reviewed chapters in this volume serves as a self-contained treatment of a topic, containing introductory material as well as the latest research results and exercises. Each chapter is presented by one or more early career researchers in the specific field of their expertise and, in turn, written for early career researchers. As a survey of the current state of the art, this book will serve as a valuable reference and is particularly well suited as an introduction to the field of symmetries and integrability of difference equations. Therefore, the book will be welcomed by advanced undergraduate and graduate students as well as by more advanced researchers.
Download or read book Developments and Retrospectives in Lie Theory written by Geoffrey Mason and published by Springer. This book was released on 2014-11-12 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Lie Theory Workshop, founded by Joe Wolf (UC, Berkeley), has been running for over two decades. At the beginning, the top universities in California and Utah hosted the meetings, which continue to run on a quarterly basis. Experts in representation theory/Lie theory from various parts of the US, Europe, Asia (China, Japan, Singapore, Russia), Canada, and South and Central America were routinely invited to give talks at these meetings. Nowadays, the workshops are also hosted at universities in Louisiana, Virginia, and Oklahoma. These Lie theory workshops have been sponsored by the NSF, noting the talks have been seminal in describing new perspectives in the field covering broad areas of current research. The contributors have all participated in these Lie theory workshops and include in this volume expository articles which will cover representation theory from the algebraic, geometric, analytic, and topological perspectives with also important connections to math physics. These survey articles, review and update the prominent seminal series of workshops in representation/Lie theory mentioned above, and reflects the widespread influence of those workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, number theory, and mathematical physics. Many of the contributors have had prominent roles in both the classical and modern developments of Lie theory and its applications.
Download or read book A Plethora of Cluster Structures on GL n written by M. Gekhtman and published by American Mathematical Society. This book was released on 2024-06-07 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: View the abstract.
Download or read book Lie Groups Geometry and Representation Theory written by Victor G. Kac and published by Springer. This book was released on 2018-12-12 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, dedicated to the memory of the great American mathematician Bertram Kostant (May 24, 1928 – February 2, 2017), is a collection of 19 invited papers by leading mathematicians working in Lie theory, representation theory, algebra, geometry, and mathematical physics. Kostant’s fundamental work in all of these areas has provided deep new insights and connections, and has created new fields of research. This volume features the only published articles of important recent results of the contributors with full details of their proofs. Key topics include: Poisson structures and potentials (A. Alekseev, A. Berenstein, B. Hoffman) Vertex algebras (T. Arakawa, K. Kawasetsu) Modular irreducible representations of semisimple Lie algebras (R. Bezrukavnikov, I. Losev) Asymptotic Hecke algebras (A. Braverman, D. Kazhdan) Tensor categories and quantum groups (A. Davydov, P. Etingof, D. Nikshych) Nil-Hecke algebras and Whittaker D-modules (V. Ginzburg) Toeplitz operators (V. Guillemin, A. Uribe, Z. Wang) Kashiwara crystals (A. Joseph) Characters of highest weight modules (V. Kac, M. Wakimoto) Alcove polytopes (T. Lam, A. Postnikov) Representation theory of quantized Gieseker varieties (I. Losev) Generalized Bruhat cells and integrable systems (J.-H. Liu, Y. Mi) Almost characters (G. Lusztig) Verlinde formulas (E. Meinrenken) Dirac operator and equivariant index (P.-É. Paradan, M. Vergne) Modality of representations and geometry of θ-groups (V. L. Popov) Distributions on homogeneous spaces (N. Ressayre) Reduction of orthogonal representations (J.-P. Serre)
Download or read book Exotic Cluster Structures on SL n The Cremmer Gervais Case written by M. Gekhtman and published by American Mathematical Soc.. This book was released on 2017-02-20 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second paper in the series of papers dedicated to the study of natural cluster structures in the rings of regular functions on simple complex Lie groups and Poisson–Lie structures compatible with these cluster structures. According to our main conjecture, each class in the Belavin–Drinfeld classification of Poisson–Lie structures on corresponds to a cluster structure in . The authors have shown before that this conjecture holds for any in the case of the standard Poisson–Lie structure and for all Belavin–Drinfeld classes in , . In this paper the authors establish it for the Cremmer–Gervais Poisson–Lie structure on , which is the least similar to the standard one.
Download or read book Proceedings Of The International Congress Of Mathematicians 2010 Icm 2010 In 4 Volumes Vol I Plenary Lectures And Ceremonies Vols Ii iv Invited Lectures written by Rajendra Bhatia and published by World Scientific. This book was released on 2011-06-06 with total page 4137 pages. Available in PDF, EPUB and Kindle. Book excerpt: ICM 2010 proceedings comprises a four-volume set containing articles based on plenary lectures and invited section lectures, the Abel and Noether lectures, as well as contributions based on lectures delivered by the recipients of the Fields Medal, the Nevanlinna, and Chern Prizes. The first volume will also contain the speeches at the opening and closing ceremonies and other highlights of the Congress.
Download or read book Quiver Representations written by Ralf Schiffler and published by Springer. This book was released on 2014-09-04 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to serve as a textbook for a course in Representation Theory of Algebras at the beginning graduate level. The text has two parts. In Part I, the theory is studied in an elementary way using quivers and their representations. This is a very hands-on approach and requires only basic knowledge of linear algebra. The main tool for describing the representation theory of a finite-dimensional algebra is its Auslander-Reiten quiver, and the text introduces these quivers as early as possible. Part II then uses the language of algebras and modules to build on the material developed before. The equivalence of the two approaches is proved in the text. The last chapter gives a proof of Gabriel’s Theorem. The language of category theory is developed along the way as needed.