Download or read book Clifford Algebras and the Classical Groups written by Ian R. Porteous and published by Cambridge University Press. This book was released on 1995-10-05 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Clifford algebras of real quadratic forms and their complexifications are studied here in detail, and those parts which are immediately relevant to theoretical physics are seen in the proper broad context. Central to the work is the classification of the conjugation and reversion anti-involutions that arise naturally in the theory. It is of interest that all the classical groups play essential roles in this classification. Other features include detailed sections on conformal groups, the eight-dimensional non-associative Cayley algebra, its automorphism group, the exceptional Lie group G(subscript 2), and the triality automorphism of Spin 8. The book is designed to be suitable for the last year of an undergraduate course or the first year of a postgraduate course.
Download or read book Classical Clifford Algebras written by Ilwoo Cho and published by CRC Press. This book was released on 2024-04-08 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classical Clifford Algebras: Operator-Algebraic and Free-Probabilistic Approaches offers novel insights through operator-algebraic and free-probabilistic models. By employing these innovative methods, the author sheds new light on the intrinsic connections between Clifford algebras and various mathematical domains. This monograph should be an essential addition to the library of any researchers interested in Clifford Algebras or Algebraic Geometry more widely. Features Includes multiple examples and applications Suitable for postgraduates and researchers working in Algebraic Geometry Takes an innovative approach to a well-established topic
Download or read book Clifford Algebra to Geometric Calculus written by David Hestenes and published by Springer Science & Business Media. This book was released on 1984 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.
Download or read book Clifford Algebras and Their Applications in Mathematical Physics written by J.S.R. Chisholm and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: William Kingdon Clifford published the paper defining his "geometric algebras" in 1878, the year before his death. Clifford algebra is a generalisation to n-dimensional space of quaternions, which Hamilton used to represent scalars and vectors in real three-space: it is also a development of Grassmann's algebra, incorporating in the fundamental relations inner products defined in terms of the metric of the space. It is a strange fact that the Gibbs Heaviside vector techniques came to dominate in scientific and technical literature, while quaternions and Clifford algebras, the true associative algebras of inner-product spaces, were regarded for nearly a century simply as interesting mathematical curiosities. During this period, Pauli, Dirac and Majorana used the algebras which bear their names to describe properties of elementary particles, their spin in particular. It seems likely that none of these eminent mathematical physicists realised that they were using Clifford algebras. A few research workers such as Fueter realised the power of this algebraic scheme, but the subject only began to be appreciated more widely after the publication of Chevalley's book, 'The Algebraic Theory of Spinors' in 1954, and of Marcel Riesz' Maryland Lectures in 1959. Some of the contributors to this volume, Georges Deschamps, Erik Folke Bolinder, Albert Crumeyrolle and David Hestenes were working in this field around that time, and in their turn have persuaded others of the importance of the subject.
Download or read book An Introduction to Clifford Algebras and Spinors written by Jayme Vaz Jr. and published by Oxford University Press. This book was released on 2016 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is unique compared to the existing literature. It is very didactical and accessible to both students and researchers, without neglecting the formal character and the deep algebraic completeness of the topic along with its physical applications.
Download or read book Multivectors And Clifford Algebra In Electrodynamics written by Bernard Jancewicz and published by World Scientific. This book was released on 1989-01-01 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clifford algebras are assuming now an increasing role in theoretical physics. Some of them predominantly larger ones are used in elementary particle theory, especially for a unification of the fundamental interactions. The smaller ones are promoted in more classical domains. This book is intended to demonstrate usefulness of Clifford algebras in classical electrodynamics. Written with a pedagogical aim, it begins with an introductory chapter devoted to multivectors and Clifford algebra for the three-dimensional space. In a later chapter modifications are presented necessary for higher dimension and for the pseudoeuclidean metric of the Minkowski space.Among other advantages one is worth mentioning: Due to a bivectorial description of the magnetic field a notion of force surfaces naturally emerges, which reveals an intimate link between the magnetic field and the electric currents as its sources. Because of the elementary level of presentation, this book can be treated as an introductory course to electromagnetic theory. Numerous illustrations are helpful in visualizing the exposition. Furthermore, each chapter ends with a list of problems which amplify or further illustrate the fundamental arguments.
Download or read book Clifford Algebras and their Applications in Mathematical Physics written by A. Micali and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains selected papers presented at the Second Workshop on Clifford Algebras and their Applications in Mathematical Physics. These papers range from various algebraic and analytic aspects of Clifford algebras to applications in, for example, gauge fields, relativity theory, supersymmetry and supergravity, and condensed phase physics. Included is a biography and list of publications of Mário Schenberg, who, next to Marcel Riesz, has made valuable contributions to these topics. This volume will be of interest to mathematicians working in the fields of algebra, geometry or special functions, to physicists working on quantum mechanics or supersymmetry, and to historians of mathematical physics.
Download or read book Clifford Algebras written by Rafal Ablamowicz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: The invited papers in this volume provide a detailed examination of Clifford algebras and their significance to analysis, geometry, mathematical structures, physics, and applications in engineering. While the papers collected in this volume require that the reader possess a solid knowledge of appropriate background material, they lead to the most current research topics. With its wide range of topics, well-established contributors, and excellent references and index, this book will appeal to graduate students and researchers.
Download or read book Geometric Computing with Clifford Algebras written by Gerald Sommer and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph-like anthology introduces the concepts and framework of Clifford algebra. It provides a rich source of examples of how to work with this formalism. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work shows that Clifford algebra provides a universal and powerful algebraic framework for an elegant and coherent representation of various problems occurring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics.
Download or read book Quaternions Clifford Algebras and Relativistic Physics written by Patrick R. Girard and published by Springer Science & Business Media. This book was released on 2007-06-25 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of Clifford algebras in mathematical physics and engineering has grown rapidly in recent years. Whereas other developments have privileged a geometric approach, this book uses an algebraic approach that can be introduced as a tensor product of quaternion algebras and provides a unified calculus for much of physics. It proposes a pedagogical introduction to this new calculus, based on quaternions, with applications mainly in special relativity, classical electromagnetism, and general relativity.
Download or read book Clifford geometric Algebras with Applications to Physics Mathematics and Engineering written by William Eric Baylis and published by Boston : Birkhäuser. This book was released on 1996 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers a comprehensive approach to the theoretical, applied and symbolic computational aspects of the subject. Excellent for self-study, leading experts in the field have written on the of topics mentioned above, using an easy approach with efficient geometric language for non-specialists.
Download or read book Clifford Algebras in Analysis and Related Topics written by John Ryan and published by CRC Press. This book was released on 1995-10-23 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book contains the most up-to-date and focused description of the applications of Clifford algebras in analysis, particularly classical harmonic analysis. It is the first single volume devoted to applications of Clifford analysis to other aspects of analysis. All chapters are written by world authorities in the area. Of particular interest is the contribution of Professor Alan McIntosh. He gives a detailed account of the links between Clifford algebras, monogenic and harmonic functions and the correspondence between monogenic functions and holomorphic functions of several complex variables under Fourier transforms. He describes the correspondence between algebras of singular integrals on Lipschitz surfaces and functional calculi of Dirac operators on these surfaces. He also discusses links with boundary value problems over Lipschitz domains. Other specific topics include Hardy spaces and compensated compactness in Euclidean space; applications to acoustic scattering and Galerkin estimates; scattering theory for orthogonal wavelets; applications of the conformal group and Vahalen matrices; Newmann type problems for the Dirac operator; plus much, much more! Clifford Algebras in Analysis and Related Topics also contains the most comprehensive section on open problems available. The book presents the most detailed link between Clifford analysis and classical harmonic analysis. It is a refreshing break from the many expensive and lengthy volumes currently found on the subject.
Download or read book Clifford Geometric Algebras written by William E. Baylis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is an outgrowth of the 1995 Summer School on Theoretical Physics of the Canadian Association of Physicists (CAP), held in Banff, Alberta, in the Canadian Rockies, from July 30 to August 12,1995. The chapters, based on lectures given at the School, are designed to be tutorial in nature, and many include exercises to assist the learning process. Most lecturers gave three or four fifty-minute lectures aimed at relative novices in the field. More emphasis is therefore placed on pedagogy and establishing comprehension than on erudition and superior scholarship. Of course, new and exciting results are presented in applications of Clifford algebras, but in a coherent and user-friendly way to the nonspecialist. The subject area of the volume is Clifford algebra and its applications. Through the geometric language of the Clifford-algebra approach, many concepts in physics are clarified, united, and extended in new and sometimes surprising directions. In particular, the approach eliminates the formal gaps that traditionally separate clas sical, quantum, and relativistic physics. It thereby makes the study of physics more efficient and the research more penetrating, and it suggests resolutions to a major physics problem of the twentieth century, namely how to unite quantum theory and gravity. The term "geometric algebra" was used by Clifford himself, and David Hestenes has suggested its use in order to emphasize its wide applicability, and b& cause the developments by Clifford were themselves based heavily on previous work by Grassmann, Hamilton, Rodrigues, Gauss, and others.
Download or read book Clifford Algebras An Introduction written by D. J. H. Garling and published by Cambridge University Press. This book was released on 2011-06-23 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: A straightforward introduction to Clifford algebras, providing the necessary background material and many applications in mathematics and physics.
Download or read book New Foundations for Classical Mechanics written by D. Hestenes and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook on classical mechanics at the intermediate level, but its main purpose is to serve as an introduction to a new mathematical language for physics called geometric algebra. Mechanics is most commonly formulated today in terms of the vector algebra developed by the American physicist J. Willard Gibbs, but for some applications of mechanics the algebra of complex numbers is more efficient than vector algebra, while in other applica tions matrix algebra works better. Geometric algebra integrates all these algebraic systems into a coherent mathematical language which not only retains the advantages of each special algebra but possesses powerful new capabilities. This book covers the fairly standard material for a course on the mechanics of particles and rigid bodies. However, it will be seen that geometric algebra brings new insights into the treatment of nearly every topic and produces simplifications that move the subject quickly to advanced levels. That has made it possible in this book to carry the treatment of two major topics in mechanics well beyond the level of other textbooks. A few words are in order about the unique treatment of these two topics, namely, rotational dynamics and celestial mechanics.
Download or read book Quadratic Mappings and Clifford Algebras written by Jacques Helmstetter and published by Springer Science & Business Media. This book was released on 2008-05-24 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: After general properties of quadratic mappings over rings, the authors more intensely study quadratic forms, and especially their Clifford algebras. To this purpose they review the required part of commutative algebra, and they present a significant part of the theory of graded Azumaya algebras. Interior multiplications and deformations of Clifford algebras are treated with the most efficient methods.
Download or read book Groups and Characters written by Larry C. Grove and published by John Wiley & Sons. This book was released on 2011-09-26 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authoritative, full-year course on both group theory and ordinary character theory--essential tools for mathematics and the physical sciences One of the few treatments available combining both group theory and character theory, Groups and Characters is an effective general textbook on these two fundamentally connected subjects. Presuming only a basic knowledge of abstract algebra as in a first-year graduate course, the text opens with a review of background material and then guides readers carefully through several of the most important aspects of groups and characters, concentrating mainly on finite groups. Challenging yet accessible, Groups and Characters features: * An extensive collection of examples surveying many different types of groups, including Sylow subgroups of symmetric groups, affine groups of fields, the Mathieu groups, and symplectic groups * A thorough, easy-to-follow discussion of Polya-Redfield enumeration, with applications to combinatorics * Inclusive explorations of the transfer function and normal complements, induction and restriction of characters, Clifford theory, characters of symmetric and alternating groups, Frobenius groups, and the Schur index * Illuminating accounts of several computational aspects of group theory, such as the Schreier-Sims algorithm, Todd-Coxeter coset enumeration, and algorithms for generating character tables As valuable as Groups and Characters will prove as a textbook for mathematicians, it has broader applications. With chapters suitable for use as independent review units, along with a full bibliography and index, it will be a dependable general reference for chemists, physicists, and crystallographers.