EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Classical and Multilinear Harmonic Analysis

Download or read book Classical and Multilinear Harmonic Analysis written by Camil Muscalu and published by Cambridge University Press. This book was released on 2013-01-31 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.

Book Classical and Multilinear Harmonic Analysis

Download or read book Classical and Multilinear Harmonic Analysis written by Camil Muscalu and published by Cambridge University Press. This book was released on 2013-01-31 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.

Book Classical and Multilinear Harmonic Analysis  Volume 1

Download or read book Classical and Multilinear Harmonic Analysis Volume 1 written by Camil Muscalu and published by Cambridge University Press. This book was released on 2013-01-31 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón–Zygmund and Littlewood–Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman–Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.

Book Classical and Multilinear Harmonic Analysis  Volume 2

Download or read book Classical and Multilinear Harmonic Analysis Volume 2 written by Camil Muscalu and published by Cambridge University Press. This book was released on 2013-01-31 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and useful to graduates and researchers in pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. The first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón–Zygmund and Littlewood–Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman–Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.

Book An Introduction to Harmonic Analysis

Download or read book An Introduction to Harmonic Analysis written by Yitzhak Katznelson and published by . This book was released on 1968 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Fourier Analysis

Download or read book Numerical Fourier Analysis written by Gerlind Plonka and published by Springer. This book was released on 2019-02-05 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a unified presentation of Fourier theory and corresponding algorithms emerging from new developments in function approximation using Fourier methods. It starts with a detailed discussion of classical Fourier theory to enable readers to grasp the construction and analysis of advanced fast Fourier algorithms introduced in the second part, such as nonequispaced and sparse FFTs in higher dimensions. Lastly, it contains a selection of numerical applications, including recent research results on nonlinear function approximation by exponential sums. The code of most of the presented algorithms is available in the authors’ public domain software packages. Students and researchers alike benefit from this unified presentation of Fourier theory and corresponding algorithms.

Book Fourier Analysis with Applications

Download or read book Fourier Analysis with Applications written by Adrian Constantin and published by Cambridge University Press. This book was released on 2016-06-02 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: A two-volume advanced text for graduate students. This first volume covers the theory of Fourier analysis.

Book Fourier Restriction  Decoupling and Applications

Download or read book Fourier Restriction Decoupling and Applications written by Ciprian Demeter and published by Cambridge University Press. This book was released on 2020-01-02 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive coverage of recent, exciting developments in Fourier restriction theory, including applications to number theory and PDEs.

Book Classical and Multilinear Harmonic Analysis

Download or read book Classical and Multilinear Harmonic Analysis written by Camil Muscalu and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained, and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón-Zygmund and Littlewood-Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary, and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman-Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form"--

Book Fourier Integrals in Classical Analysis

Download or read book Fourier Integrals in Classical Analysis written by Christopher D. Sogge and published by Cambridge University Press. This book was released on 2017-04-27 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced monograph is concerned with modern treatments of central problems in harmonic analysis. The main theme of the book is the interplay between ideas used to study the propagation of singularities for the wave equation and their counterparts in classical analysis. In particular, the author uses microlocal analysis to study problems involving maximal functions and Riesz means using the so-called half-wave operator. To keep the treatment self-contained, the author begins with a rapid review of Fourier analysis and also develops the necessary tools from microlocal analysis. This second edition includes two new chapters. The first presents Hörmander's propagation of singularities theorem and uses this to prove the Duistermaat-Guillemin theorem. The second concerns newer results related to the Kakeya conjecture, including the maximal Kakeya estimates obtained by Bourgain and Wolff.

Book Graph Representation Learning

Download or read book Graph Representation Learning written by William L. William L. Hamilton and published by Springer Nature. This book was released on 2022-06-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

Book Analysis of Boolean Functions

Download or read book Analysis of Boolean Functions written by Ryan O'Donnell and published by Cambridge University Press. This book was released on 2014-06-05 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level text gives a thorough overview of the analysis of Boolean functions, beginning with the most basic definitions and proceeding to advanced topics.

Book Real and Complex Clifford Analysis

Download or read book Real and Complex Clifford Analysis written by Sha Huang and published by Springer Science & Business Media. This book was released on 2006-03-16 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clifford analysis, a branch of mathematics that has been developed since about 1970, has important theoretical value and several applications. In this book, the authors introduce many properties of regular functions and generalized regular functions in real Clifford analysis, as well as harmonic functions in complex Clifford analysis. It covers important developments in handling the incommutativity of multiplication in Clifford algebra, the definitions and computations of high-order singular integrals, boundary value problems, and so on. In addition, the book considers harmonic analysis and boundary value problems in four kinds of characteristic fields proposed by Luogeng Hua for complex analysis of several variables. The great majority of the contents originate in the authors’ investigations, and this new monograph will be interesting for researchers studying the theory of functions.

Book Locally Convex Spaces and Harmonic Analysis  An Introduction

Download or read book Locally Convex Spaces and Harmonic Analysis An Introduction written by Philippe G. Ciarlet and published by SIAM. This book was released on 2021-08-10 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained textbook covers the fundamentals of two basic topics of linear functional analysis: locally convex spaces and harmonic analysis. Readers will find detailed introductions to topological vector spaces, distribution theory, weak topologies, the Fourier transform, the Hilbert transform, and Calderón–Zygmund singular integrals. An ideal introduction to more advanced texts, the book complements Ciarlet’s Linear and Nonlinear Functional Analysis with Applications (SIAM), in which these two topics were not treated. Pedagogical features such as detailed proofs and 93 problems make the book ideal for a one-semester first-year graduate course or for self-study. The book is intended for advanced undergraduates and first-year graduate students and researchers. It is appropriate for courses on functional analysis, distribution theory, Fourier transform, and harmonic analysis.

Book Mathematics and Computation

Download or read book Mathematics and Computation written by Avi Wigderson and published by Princeton University Press. This book was released on 2019-10-29 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography

Book Fourier Analysis

    Book Details:
  • Author : T. W. Körner
  • Publisher : Cambridge University Press
  • Release : 2022-06-09
  • ISBN : 1009230077
  • Pages : pages

Download or read book Fourier Analysis written by T. W. Körner and published by Cambridge University Press. This book was released on 2022-06-09 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Fourier analysis is a subject that was born in physics but grew up in mathematics. Now it is part of the standard repertoire for mathematicians, physicists and engineers. This diversity of interest is often overlooked, but in this much-loved book, Tom Körner provides a shop window for some of the ideas, techniques and elegant results of Fourier analysis, and for their applications. These range from number theory, numerical analysis, control theory and statistics, to earth science, astronomy and electrical engineering. The prerequisites are few (a reader with knowledge of second- or third-year undergraduate mathematics should have no difficulty following the text), and the style is lively and entertaining. This edition of Körner's 1989 text includes a foreword written by Professor Terence Tao introducing it to a new generation of fans.

Book Wavelets

    Book Details:
  • Author : Yves Meyer
  • Publisher : Cambridge University Press
  • Release : 1997
  • ISBN : 9780521794732
  • Pages : 340 pages

Download or read book Wavelets written by Yves Meyer and published by Cambridge University Press. This book was released on 1997 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: A classic exposition of the theory of wavelets from two of the subject's leading experts.