Download or read book Classical And Dynamical Markov And Lagrange Spectra Dynamical Fractal And Arithmetic Aspects written by Davi Dos Santos Lima and published by World Scientific. This book was released on 2020-09-18 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book intends to give a modern presentation of the classical Markov and Lagrange spectrum, which are fundamental objects from the theory of Diophantine approximations and of their several generalizations related to Dynamical Systems and Differential Geometry. Besides presenting many classical results, the book includes several topics of recent research on the subject, connecting several fields of Mathematics — Number Theory, Dynamical Systems and Fractal Geometry.It includes topics as:
Download or read book Topological and Ergodic Theory of Symbolic Dynamics written by Henk Bruin and published by American Mathematical Society. This book was released on 2022-12-21 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symbolic dynamics is essential in the study of dynamical systems of various types and is connected to many other fields such as stochastic processes, ergodic theory, representation of numbers, information and coding, etc. This graduate text introduces symbolic dynamics from a perspective of topological dynamical systems and presents a vast variety of important examples. After introducing symbolic and topological dynamics, the core of the book consists of discussions of various subshifts of positive entropy, of zero entropy, other non-shift minimal action on the Cantor set, and a study of the ergodic properties of these systems. The author presents recent developments such as spacing shifts, square-free shifts, density shifts, $mathcal{B}$-free shifts, Bratteli-Vershik systems, enumeration scales, amorphic complexity, and a modern and complete treatment of kneading theory. Later, he provides an overview of automata and linguistic complexity (Chomsky's hierarchy). The necessary background for the book varies, but for most of it a solid knowledge of real analysis and linear algebra and first courses in probability and measure theory, metric spaces, number theory, topology, and set theory suffice. Most of the exercises have solutions in the back of the book.
Download or read book The Markoff and Lagrange Spectra written by Thomas W. Cusick and published by American Mathematical Soc.. This book was released on 1989 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is directed at mathematicians interested in Diophantine approximation and the theory of quadratic forms and the relationship of these subjects to Markoff and Lagrange spectra. The authors have gathered and systemized numerous results from the diverse and scattered literature, much of which has appeared in rather inaccessible Russian publications. Readers will find a comprehensive overview of the theory of the Markoff and Lagrange spectra, starting with the origins of the subject in two papers of A. Markoff from 1879-80. Most of the progress since that time has occurred in the last 20 years or so, when there has been a resurgence of interest in these spectra. The authors provide an excellent exposition of these developments, in addition to presenting many proofs and correcting various errors in the literature.
Download or read book Physics Briefs written by and published by . This book was released on 1993 with total page 1288 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Thermodynamic Formalism written by David Ruelle and published by Cambridge University Press. This book was released on 2004-11-25 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reissued in the Cambridge Mathematical Library this classic book outlines the theory of thermodynamic formalism which was developed to describe the properties of certain physical systems consisting of a large number of subunits. It is aimed at mathematicians interested in ergodic theory, topological dynamics, constructive quantum field theory, the study of certain differentiable dynamical systems, notably Anosov diffeomorphisms and flows. It is also of interest to theoretical physicists concerned with the conceptual basis of equilibrium statistical mechanics. The level of the presentation is generally advanced, the objective being to provide an efficient research tool and a text for use in graduate teaching. Background material on mathematics has been collected in appendices to help the reader. Extra material is given in the form of updates of problems that were open at the original time of writing and as a new preface specially written for this new edition by the author.
Download or read book Chemical Abstracts written by and published by . This book was released on with total page 2762 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Non Newtonian Calculus written by Michael Grossman and published by Non-Newtonian Calculus. This book was released on 1972 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: The non-Newtonian calculi provide a wide variety of mathematical tools for use in science, engineering, and mathematics. They appear to have considerable potential for use as alternatives to the classical calculus of Newton and Leibniz. It may well be that these calculi can be used to define new concepts, to yield new or simpler laws, or to formulate or solve problems.
Download or read book Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations written by Jacob Palis Júnior and published by Cambridge University Press. This book was released on 1995-01-05 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained introduction to the classical theory and its generalizations, aimed at mathematicians and scientists working in dynamical systems.
Download or read book Chaos Theory Tamed written by Garnett Williams and published by CRC Press. This book was released on 1997-09-09 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text aims to bridge the gap between non-mathematical popular treatments and the distinctly mathematical publications that non- mathematicians find so difficult to penetrate. The author provides understandable derivations or explanations of many key concepts, such as Kolmogrov-Sinai entropy, dimensions, Fourier analysis, and Lyapunov exponents.
Download or read book Number Theory and Dynamical Systems written by M. M. Dodson and published by Cambridge University Press. This book was released on 1989-11-09 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains selected contributions from a very successful meeting on Number Theory and Dynamical Systems held at the University of York in 1987. There are close and surprising connections between number theory and dynamical systems. One emerged last century from the study of the stability of the solar system where problems of small divisors associated with the near resonance of planetary frequencies arose. Previously the question of the stability of the solar system was answered in more general terms by the celebrated KAM theorem, in which the relationship between near resonance (and so Diophantine approximation) and stability is of central importance. Other examples of the connections involve the work of Szemeredi and Furstenberg, and Sprindzuk. As well as containing results on the relationship between number theory and dynamical systems, the book also includes some more speculative and exploratory work which should stimulate interest in different approaches to old problems.
Download or read book Complex Analysis and Dynamical Systems written by Mark Agranovsky and published by Birkhäuser. This book was released on 2018-01-31 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on developments in complex dynamical systems and geometric function theory over the past decade, showing strong links with other areas of mathematics and the natural sciences. Traditional methods and approaches surface in physics and in the life and engineering sciences with increasing frequency – the Schramm‐Loewner evolution, Laplacian growth, and quadratic differentials are just a few typical examples. This book provides a representative overview of these processes and collects open problems in the various areas, while at the same time showing where and how each particular topic evolves. This volume is dedicated to the memory of Alexander Vasiliev.
Download or read book Mathematical Reviews written by and published by . This book was released on 1996 with total page 712 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Statistical Mechanics written by James Sethna and published by OUP Oxford. This book was released on 2006-04-07 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: In each generation, scientists must redefine their fields: abstracting, simplifying and distilling the previous standard topics to make room for new advances and methods. Sethna's book takes this step for statistical mechanics - a field rooted in physics and chemistry whose ideas and methods are now central to information theory, complexity, and modern biology. Aimed at advanced undergraduates and early graduate students in all of these fields, Sethna limits his main presentation to the topics that future mathematicians and biologists, as well as physicists and chemists, will find fascinating and central to their work. The amazing breadth of the field is reflected in the author's large supply of carefully crafted exercises, each an introduction to a whole field of study: everything from chaos through information theory to life at the end of the universe.
Download or read book Probability Theory and Stochastic Processes with Applications Second Edition written by Oliver Knill and published by World Scientific Publishing Company. This book was released on 2017-01-31 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition has a unique approach that provides a broad and wide introduction into the fascinating area of probability theory. It starts on a fast track with the treatment of probability theory and stochastic processes by providing short proofs. The last chapter is unique as it features a wide range of applications in other fields like Vlasov dynamics of fluids, statistics of circular data, singular continuous random variables, Diophantine equations, percolation theory, random Schrödinger operators, spectral graph theory, integral geometry, computer vision, and processes with high risk.Many of these areas are under active investigation and this volume is highly suited for ambitious undergraduate students, graduate students and researchers.
Download or read book The Mathematics of Harmony written by Alexey Stakhov and published by World Scientific. This book was released on 2009 with total page 745 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assisted by Scott Olsen ( Central Florida Community College, USA ). This volume is a result of the author's four decades of research in the field of Fibonacci numbers and the Golden Section and their applications. It provides a broad introduction to the fascinating and beautiful subject of the OC Mathematics of Harmony, OCO a new interdisciplinary direction of modern science. This direction has its origins in OC The ElementsOCO of Euclid and has many unexpected applications in contemporary mathematics (a new approach to a history of mathematics, the generalized Fibonacci numbers and the generalized golden proportions, the OC goldenOCO algebraic equations, the generalized Binet formulas, Fibonacci and OC goldenOCO matrices), theoretical physics (new hyperbolic models of Nature) and computer science (algorithmic measurement theory, number systems with irrational radices, Fibonacci computers, ternary mirror-symmetrical arithmetic, a new theory of coding and cryptography based on the Fibonacci and OC goldenOCO matrices). The book is intended for a wide audience including mathematics teachers of high schools, students of colleges and universities and scientists in the field of mathematics, theoretical physics and computer science. The book may be used as an advanced textbook by graduate students and even ambitious undergraduates in mathematics and computer science. Sample Chapter(s). Introduction (503k). Chapter 1: The Golden Section (2,459k). Contents: Classical Golden Mean, Fibonacci Numbers, and Platonic Solids: The Golden Section; Fibonacci and Lucas Numbers; Regular Polyhedrons; Mathematics of Harmony: Generalizations of Fibonacci Numbers and the Golden Mean; Hyperbolic Fibonacci and Lucas Functions; Fibonacci and Golden Matrices; Application in Computer Science: Algorithmic Measurement Theory; Fibonacci Computers; Codes of the Golden Proportion; Ternary Mirror-Symmetrical Arithmetic; A New Coding Theory Based on a Matrix Approach. Readership: Researchers, teachers and students in mathematics (especially those interested in the Golden Section and Fibonacci numbers), theoretical physics and computer science."
Download or read book Proceedings Of The International Congress Of Mathematicians 2018 Icm 2018 In 4 Volumes written by Boyan Sirakov and published by World Scientific. This book was released on 2019-02-27 with total page 5393 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.
Download or read book Exotic Smoothness And Physics Differential Topology And Spacetime Models written by Torsten Asselmeyer-maluga and published by World Scientific. This book was released on 2007-01-23 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recent revolution in differential topology related to the discovery of non-standard (”exotic”) smoothness structures on topologically trivial manifolds such as R4 suggests many exciting opportunities for applications of potentially deep importance for the spacetime models of theoretical physics, especially general relativity. This rich panoply of new differentiable structures lies in the previously unexplored region between topology and geometry. Just as physical geometry was thought to be trivial before Einstein, physicists have continued to work under the tacit — but now shown to be incorrect — assumption that differentiability is uniquely determined by topology for simple four-manifolds. Since diffeomorphisms are the mathematical models for physical coordinate transformations, Einstein's relativity principle requires that these models be physically inequivalent. This book provides an introductory survey of some of the relevant mathematics and presents preliminary results and suggestions for further applications to spacetime models.