EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Charge Dynamics in Organic Semiconductors

Download or read book Charge Dynamics in Organic Semiconductors written by Pascal Kordt and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-09-12 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the field of organic semiconductors researchers and manufacturers are faced with a wide range of potential molecules. This work presents concepts for simulation-based predictions of material characteristics starting from chemical stuctures. The focus lies on charge transport – be it in microscopic models of amorphous morphologies, lattice models or large-scale device models. An extensive introductory review, which also includes experimental techniques, makes this work interesting for a broad readership. Contents: Organic Semiconductor Devices Experimental Techniques Charge Dynamics at Dierent Scales Computational Methods Energetics and Dispersive Transport Correlated Energetic Landscapes Microscopic, Stochastic and Device Simulations Parametrization of Lattice Models Drift–Diusion with Microscopic Link

Book Physics of Organic Semiconductors

Download or read book Physics of Organic Semiconductors written by Wolfgang Brütting and published by John Wiley & Sons. This book was released on 2006-05-12 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filling the gap in the literature currently available, this book presents an overview of our knowledge of the physics behind organic semiconductor devices. Contributions from 18 international research groups cover various aspects of this field, ranging from the growth of organic layers and crystals, their electronic properties at interfaces, their photophysics and electrical transport properties to the application of these materials in such different devices as organic field-effect transistors, photovoltaic cells and organic light-emitting diodes. From the contents: * Excitation Dynamics in Organic Semiconductors * Organic Field-Effect Transistors * Spectroscopy of Organic Semiconductors * Interfaces between Organic Semiconductors and Metals * Analysis and Modeling of Devices * Exciton Formation and Energy Transfer in Organic Light Emitting Diodes * Deposition and Characterization

Book Physics of Organic Semiconductors

Download or read book Physics of Organic Semiconductors written by Wolfgang Brütting and published by John Wiley & Sons. This book was released on 2012-10-02 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of organic electronics has seen a steady growth over the last 15 years. At the same time, our scientific understanding of how to achieve optimum device performance has grown, and this book gives an overview of our present-day knowledge of the physics behind organic semiconductor devices. Based on the very successful first edition, the editors have invited top scientists from the US, Japan, and Europe to include the developments from recent years, covering such fundamental issues as: - growth and characterization of thin films of organic semiconductors, - charge transport and photophysical properties of the materials as well as their electronic structure at interfaces, and - analysis and modeling of devices like organic light-emitting diodes or organic lasers. The result is an overview of the field for both readers with basic knowledge and for an application-oriented audience. It thus bridges the gap between textbook knowledge largely based on crystalline molecular solids and those books focusing more on device applications.

Book Organic Semiconductors for Optoelectronics

Download or read book Organic Semiconductors for Optoelectronics written by Hiroyoshi Naito and published by John Wiley & Sons. This book was released on 2021-08-02 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive coverage of organic electronics, including fundamental theory, basic properties, characterization methods, device physics, and future trends Organic semiconductor materials have vast commercial potential for a wide range of applications, from self-emitting OLED displays and solid-state lighting to plastic electronics and organic solar cells. As research in organic optoelectronic devices continues to expand at an unprecedented rate, organic semiconductors are being applied to flexible displays, biosensors, and other cost-effective green devices in ways not possible with conventional inorganic semiconductors. Organic Semiconductors for Optoelectronics is an up-to-date review of the both the fundamental theory and latest research and development advances in organic semiconductors. Featuring contributions from an international team of experts, this comprehensive volume covers basic properties of organic semiconductors, characterization techniques, device physics, and future trends in organic device development. Detailed chapters provide key information on the device physics of organic field-effect transistors, organic light-emitting diodes, organic solar cells, organic photosensors, and more. This authoritative resource: Provides a clear understanding of the optoelectronic properties of organic semiconductors and their influence to overall device performance Explains the theories behind relevant mechanisms in organic semiconducting materials and in organic devices Discusses current and future trends and challenges in the development of organic optoelectronic devices Reviews electronic properties, device mechanisms, and characterization techniques of organic semiconducting materials Covers theoretical concepts of optical properties of organic semiconductors including fluorescent, phosphorescent, and thermally-assisted delayed fluorescent emitters An important new addition to the Wiley Series in Materials for Electronic & Optoelectronic Applications, Organic Semiconductors for Optoelectronics bridges the gap between advanced books and undergraduate textbooks on semiconductor physics and solid-state physics. It is essential reading for academic researchers, graduate students, and industry professionals involved in organic electronics, materials science, thin film devices, and optoelectronics research and development.

Book Solution Processable Components for Organic Electronic Devices

Download or read book Solution Processable Components for Organic Electronic Devices written by Beata Luszczynska and published by John Wiley & Sons. This book was released on 2019-09-16 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides first-hand insights into advanced fabrication techniques for solution processable organic electronics materials and devices The field of printable organic electronics has emerged as a technology which plays a major role in materials science research and development. Printable organic electronics soon compete with, and for specific applications can even outpace, conventional semiconductor devices in terms of performance, cost, and versatility. Printing techniques allow for large-scale fabrication of organic electronic components and functional devices for use as wearable electronics, health-care sensors, Internet of Things, monitoring of environment pollution and many others, yet-to-be-conceived applications. The first part of Solution-Processable Components for Organic Electronic Devices covers the synthesis of: soluble conjugated polymers; solution-processable nanoparticles of inorganic semiconductors; high-k nanoparticles by means of controlled radical polymerization; advanced blending techniques yielding novel materials with extraordinary properties. The book also discusses photogeneration of charge carriers in nanostructured bulk heterojunctions and charge carrier transport in multicomponent materials such as composites and nanocomposites as well as photovoltaic devices modelling. The second part of the book is devoted to organic electronic devices, such as field effect transistors, light emitting diodes, photovoltaics, photodiodes and electronic memory devices which can be produced by solution-based methods, including printing and roll-to-roll manufacturing. The book provides in-depth knowledge for experienced researchers and for those entering the field. It comprises 12 chapters focused on: ? novel organic electronics components synthesis and solution-based processing techniques ? advanced analysis of mechanisms governing charge carrier generation and transport in organic semiconductors and devices ? fabrication techniques and characterization methods of organic electronic devices Providing coverage of the state of the art of organic electronics, Solution-Processable Components for Organic Electronic Devices is an excellent book for materials scientists, applied physicists, engineering scientists, and those working in the electronics industry.

Book Electronic Processes in Organic Semiconductors

Download or read book Electronic Processes in Organic Semiconductors written by Anna Köhler and published by John Wiley & Sons. This book was released on 2015-06-08 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first advanced textbook to provide a useful introduction in a brief, coherent and comprehensive way, with a focus on the fundamentals. After having read this book, students will be prepared to understand any of the many multi-authored books available in this field that discuss a particular aspect in more detail, and should also benefit from any of the textbooks in photochemistry or spectroscopy that concentrate on a particular mechanism. Based on a successful and well-proven lecture course given by one of the authors for many years, the book is clearly structured into four sections: electronic structure of organic semiconductors, charged and excited states in organic semiconductors, electronic and optical properties of organic semiconductors, and fundamentals of organic semiconductor devices.

Book Physics of Organic Semiconductors

Download or read book Physics of Organic Semiconductors written by Wolfgang Brutting and published by . This book was released on 2012 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Energy and Charge Transfer in Organic Semiconductors

Download or read book Energy and Charge Transfer in Organic Semiconductors written by Kohzoh Masuda and published by Springer. This book was released on 1974-07 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Great progress has been made in the field of ordinary semiconductor physics and associated technologies. For the time being, if we could use new materials such as organic semiconductors progress in electronics could be accelerated. Characteristics of organic semiconductors that are superior to others are: i) high photo-conductivity under irradiation along with low leakage current in the dark, ii) high sensitivity of the conductivity to various gases and to pressure. iii) possibility of using them in the amorphous state, iv) possibility of making devices of extremely small size, v) large variety of the materials, which makes suitable choice of material component easy. A possible future development is a highly conductive material which could be used for electric power transmission - and which might help solve some of the problems posed by transmission losses. The U.S.-Japan Seminar on Energy and Charge Transfer in Organic Semiconductors was held in Osaka Japan, 6-9 August, 1973. Completed results were summarized and the direction for the future was discussed. Information was exchanged quite freely and actively in a pleasant atmosphere. Many of the papers presented at the seminar are published here but unfortunately a few could not be included. It would give us great pleasure if this seminar could be one step in the further development of the research in this field.

Book Handbook of Materials Modeling

Download or read book Handbook of Materials Modeling written by Sidney Yip and published by Springer Science & Business Media. This book was released on 2007-11-17 with total page 2903 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.

Book The  Non  Local Density of States of Electronic Excitations in Organic Semiconductors

Download or read book The Non Local Density of States of Electronic Excitations in Organic Semiconductors written by Carl. R Poelking and published by Springer. This book was released on 2017-10-24 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the microscopic understanding of the function of organic semiconductors. By tracing the link between their morphological structure and electronic properties across multiple scales, it represents an important advance in this direction. Organic semiconductors are materials at the interface between hard and soft matter: they combine structural variability, processibility and mechanical flexibility with the ability to efficiently transport charge and energy. This unique set of properties makes them a promising class of materials for electronic devices, including organic solar cells and light-emitting diodes. Understanding their function at the microscopic scale – the goal of this work – is a prerequisite for the rational design and optimization of the underlying materials. Based on new multiscale simulation protocols, the book studies the complex interplay between molecular architecture, supramolecular organization and electronic structure in order to reveal why some materials perform well – and why others do not. In particular, by examining the long-range effects that interrelate microscopic states and mesoscopic structure in these materials, the book provides qualitative and quantitative insights into e.g. the charge-generation process, which also serve as a basis for new optimization strategies.

Book Organic Optoelectronic Materials

Download or read book Organic Optoelectronic Materials written by Yongfang Li and published by Springer. This book was released on 2015-05-30 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume reviews the latest trends in organic optoelectronic materials. Each comprehensive chapter allows graduate students and newcomers to the field to grasp the basics, whilst also ensuring that they have the most up-to-date overview of the latest research. Topics include: organic conductors and semiconductors; conducting polymers and conjugated polymer semiconductors, as well as their applications in organic field-effect-transistors; organic light-emitting diodes; and organic photovoltaics and transparent conducting electrodes. The molecular structures, synthesis methods, physicochemical and optoelectronic properties of the organic optoelectronic materials are also introduced and described in detail. The authors also elucidate the structures and working mechanisms of organic optoelectronic devices and outline fundamental scientific problems and future research directions. This volume is invaluable to all those interested in organic optoelectronic materials.

Book An Introduction to Charge Carriers

Download or read book An Introduction to Charge Carriers written by Jai Singh and published by . This book was released on 2022 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a semi-quantitative approach to understanding and applications of charge carriers in inorganic and organic opto-electronic and photonic devices. Featuring contributions by noted experts in the field of optoelectronics, materials and photonics, this book describes the importance of charge carriers in the operation of optoelectronic and photonic devices of both inorganic and organic semiconductors. An Introduction to Charge Carriers starts with the concept of charge carriers and their involvement in a few inorganic and organic devices, like solar cells and organic light emitting diodes (OLEDs), including those based on thermally activated and delayed fluorescence (TADF). Then it discusses the applications of charge carriers in silicon p-n junction, nanomaterials, wurtzite phases of gallium, aluminium and indium nitride devices, ion conducting polymer electrolytes, rare-earth doped glasses, organic photodetectors, and several aspects of organic and perovskite solar cells. An Introduction to Charge Carriers is an ideal book for senior undergraduate and postgraduate students and teaching and research professionals in the field of solid-state physics, material science and engineering.

Book Unimolecular and Supramolecular Electronics I

Download or read book Unimolecular and Supramolecular Electronics I written by Robert M. Metzger and published by Springer Science & Business Media. This book was released on 2012-01-10 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Charge Transport in Organic Semiconductors, by Heinz Bässler and Anna Köhler. Frontiers of Organic Conductors and Superconductors, by Gunzi Saito and Yukihiro Yoshida. Fullerenes, Carbon Nanotubes, and Graphene for Molecular Electronics, by Julio R. Pinzón, Adrián Villalta-Cerdas and Luis Echegoyen. Current Challenges in Organic Photovoltaic Solar Energy Conversion, by Cody W. Schlenker and Mark E. Thompson.- Molecular Monolayers as Semiconducting Channels in Field Effect Transistors, by Cherie R. Kagan. Issues and Challenges in Vapor-Deposited Top Metal Contacts for Molecule-Based Electronic Devices, by Masato M. Maitani and David L. Allara. Spin Polarized Electron Tunneling and Magnetoresistance in Molecular Junctions, by Greg Szulczewski.

Book Organic Conductors

Download or read book Organic Conductors written by Jean-Pierre Farges and published by CRC Press. This book was released on 2022-09-16 with total page 874 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work examines all aspects of organic conductors, detailing recent theoretical concepts and current laboratory methods of synthesis, measurement, control and analysis. It describes advances in molecular-scale engineering, including switching and memory systems, Schottky and electroluminescent diodes, field-effect transistors, and photovoltaic devices and solar cells.

Book Organic Molecular Crystals

Download or read book Organic Molecular Crystals written by E. Silin̦š and published by American Institute of Physics. This book was released on 1994 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Market: Specialists, researchers, and students in solid-state physics, materials science, electronics, chemical physics, organic and physical chemistry, and molecular biophysics. This monograph focuses on the interaction processes of excitons and charge carriers with the local environment, including the polarization and localization phenomena and the formation of polaronic quasi- particles. Transport phenomena are discussed and directly correlated with interaction dynamics, which actually determine the time- and temperature-dependent transiton of charge carriers and excitons from a coherent to a diffusive mode of motion.

Book Classical and Quantum Dynamics in Condensed Phase Simulations

Download or read book Classical and Quantum Dynamics in Condensed Phase Simulations written by Bruce J Berne and published by World Scientific. This book was released on 1998-06-17 with total page 880 pages. Available in PDF, EPUB and Kindle. Book excerpt: The school held at Villa Marigola, Lerici, Italy, in July 1997 was very much an educational experiment aimed not just at teaching a new generation of students the latest developments in computer simulation methods and theory, but also at bringing together researchers from the condensed matter computer simulation community, the biophysical chemistry community and the quantum dynamics community to confront the shared problem: the development of methods to treat the dynamics of quantum condensed phase systems. This volume collects the lectures delivered there. Due to the focus of the school, the contributions divide along natural lines into two broad groups: (1) the most sophisticated forms of the art of computer simulation, including biased phase space sampling schemes, methods which address the multiplicity of time scales in condensed phase problems, and static equilibrium methods for treating quantum systems; (2) the contributions on quantum dynamics, including methods for mixing quantum and classical dynamics in condensed phase simulations and methods capable of treating all degrees of freedom quantum-mechanically. Contents:Barrier Crossing: Classical Theory of Rare but Important Events (D Chandler)Monte Carlo Simulations (D Frenkel)Molecular Dynamics Methods for the Enhanced Sampling of Phase Space (B J Berne)Constrained and Nonequilibrium Molecular Dynamics (G Ciccotti & M Ferrario)From Erying to Kramers: Computation of Diffusive Barrier Crossing Rates (M J Ruiz-Montero)Monte Carlo Methods for Sampling of Rare Event States (W Janke)Proton Transfer in Ice (D Marx)Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions (H Jónsson et al.)RAW Quantum Transition State Theory (G Mills et al.)Dynamics of Peptide Folding (R Elber et al.)Theoretical Studies of Activated Processes in Biological Ion Channels (B Roux & S Crouzy)The Semiclassical Initial Value Representation for Including Quantum Effects in Molecular Dynamics Simulations (W H Miller)Tunneling in the Condensed Phase: Barrier Crossing and Dynamical Control (N Makri)Feynman Path Centroid Methods for Condensed Phase Quantum Dynamics (G A Voth)Quantum Molecular Dynamics Using Wigner Representation (V S Filinov et al.)Nonadiabatic Molecular Dynamics Methods for Diffusion (D Laria et al.)and other papers Readership: Computational and statistical physicists. Keywords:Quantum;Molecular Dynamics;DynamicsReviews: “… this volume is a useful introduction to currently popular, and widely-used techniques in chemical and statistical physics. The authors are well-respected researchers in the field and the level is appropriate to graduate students and researchers.” Journal of Statistical Physics

Book Halide Perovskites

Download or read book Halide Perovskites written by Tze-Chien Sum and published by John Wiley & Sons. This book was released on 2019-03-25 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real insight from leading experts in the field into the causes of the unique photovoltaic performance of perovskite solar cells, describing the fundamentals of perovskite materials and device architectures. The authors cover materials research and development, device fabrication and engineering methodologies, as well as current knowledge extending beyond perovskite photovoltaics, such as the novel spin physics and multiferroic properties of this family of materials. Aimed at a better and clearer understanding of the latest developments in the hybrid perovskite field, this is a must-have for material scientists, chemists, physicists and engineers entering or already working in this booming field.