EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Characterizing Reservoir Quality for Geologic Storage of CO2

Download or read book Characterizing Reservoir Quality for Geologic Storage of CO2 written by Harry Lejeune Hull and published by . This book was released on 2021 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: The geologic storage of anthropogenic CO2 through Carbon Capture, Utilization, and Storage (CCUS) is necessary to reduce the emissions produced as a biproduct of fossil fuel combustion. This process of injecting CO2 into the subsurface is known as carbon sequestration and requires the assessment of geologic reservoirs. Depositional processes and the resulting facies and stratigraphic architectures have great influence over reservoir volumetrics and behavior. The objective of this study is to constrain the depositional controls on storage capacity. A subsurface Lower Miocene 2 strandplain/barrier bar complex of the Texas Gulf Coast at Matagorda bay is interpreted and modeled using well data and 3D seismic. These data reveal the presence of a major shore zone that experienced initial progradation through the late highstand and into the lowstand before later retrogradation. The LM2 is then capped by a thick regional shale. A stratigraphic framework is built that captures these changes in shoreline position at both the systems tract and parasequences level. Sediments were strike fed and wave-dominated processes are apparent. Petrophysical properties of this region including porosity are modeled from with machine learning from log data. Machine learning to predict porosity is carried out using a random forest regression in which porosity is a function of lithology and depth. Finally, a 3D reservoir model is built integrating the stratigraphic, facies, and petrophysical properties. Static storage capacity estimates and storage capacity maps are created from the 3D model. Storage capacity is observed to occur at a strike parallel geometry. This “axis” of highest storage capacity tracts with the position of the shore zone in vertical succession highlighting a dependence on the balance between the generation of accommodation and sediment supply. At a higher resolution storage capacity is observed highest within the foreshore where beach ridges are interpreted from seismic stratal slices. High wave energy processes at this position in the shoreline profile are known to create well sorted and therefore highly porous sandstones. Storage capacity is then a direct function of the high wave energy paleo-depositional processes occurring at the shoreline

Book Geologic Carbon Sequestration

Download or read book Geologic Carbon Sequestration written by V. Vishal and published by Springer. This book was released on 2016-05-11 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.

Book Geological CO2 Storage Characterization

Download or read book Geological CO2 Storage Characterization written by Ronald C. Surdam and published by Springer Science & Business Media. This book was released on 2013-12-12 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book investigates geological CO2 storage and its role in greenhouse gas emissions reduction, enhanced oil recovery, and environmentally responsible use of fossil fuels. Written for energy/environmental regulators at every level of government (federal, state, etc.), scientists/academics, representatives from the power and fossil energy sectors, NGOs, and other interested parties, this book uses the characterization of the Rock Springs Uplift site in Wyoming as an integrated case study to illustrate the application of geological CO2 storage science, principles, and theory in a real-world scenario.

Book Geomechanical Characterization of CO2 Storage Reservoirs on the Rock Springs Uplift  WY

Download or read book Geomechanical Characterization of CO2 Storage Reservoirs on the Rock Springs Uplift WY written by Hua Yu and published by . This book was released on 2018 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon sequestration in deep geological formations has been considered as an important and practical solution to significantly reduce the CO2 emission. CO2 injection into reservoirs may lead to mechanical, chemical, and hydrological effects on the geological formations. This Ph.D. research primarily focuses on quantifying and analyzing geomechanical properties and the effect of CO2 on geomechanical properties of reservoir rocks. The research includes: 1) select and prepare rock samples (Weber Sandstone) from Rock Springs Uplift, Wyoming; 2) design and conduct geomechanical experiments; 3) improve the estimations of geomechanical properties of rocks; 4) develop the analytical model describing the nonlinear rock failure behavior; 5) investigate the effect of compliant pores on reservoir rocks under different stress states; 6) quantify and analyze the changes in geomechanical properties of reservoir rocks due to CO2. Major conclusions drawn from this research were summarized. First, a new method proposed for estimating elastic constants and crack propagation stress thresholds significantly eliminates bias due to both user-defined data interval and poor data resolution on the stress-strain data analysis procedures. Second, a generalized power-law failure criterion was derived in terms of the rock strength properties and validated through published test data for different rock types. Third, the nonlinear pore pressure-volumetric strain relationship at low confining pressure changes to a linear behavior at high confining pressure. Fourth, the unstable crack growth region governed by the initial compliant porosity is independent of the differential pressure. Fifth, the effect of CO2 on geomechanical properties of Weber Sandstone in the linear elastic, nonlinear plastic, and post-failure regime is limited. However, a consistent change in Mohr failure coefficients due to CO2 was observed.

Book Negative Emissions Technologies and Reliable Sequestration

Download or read book Negative Emissions Technologies and Reliable Sequestration written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-04-08 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.

Book Geologic Characterization and Modeling for Quantifying CO2 Storage Capacity of the High Island 10 L Field in Texas State Waters  Offshore Gulf of Mexico

Download or read book Geologic Characterization and Modeling for Quantifying CO2 Storage Capacity of the High Island 10 L Field in Texas State Waters Offshore Gulf of Mexico written by Omar Ramirez Garcia and published by . This book was released on 2019 with total page 32 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon dioxide capture and storage (CCS) is a promising technology for mitigating climate change by reducing CO2 emissions to the atmosphere and injecting captured industrial emissions into deep geologic formations. Deep subsurface storage in geologic formations is similar to trapping natural hydrocarbons and is one of the key components of CCS technology. The quantification of the available subsurface storage resource is the subject of this research project. This study focuses on site-specific geologic characterization, reservoir modeling, and CO2 storage resource assessment (capacity) of a depleted oil and gas field located on the inner continental shelf of the Gulf of Mexico, the High Island 10L field. lower Miocene sands in the Fleming Group beneath the regional transgressive Amphistegina B shale have extremely favorable geologic properties (porosity, thickness, extent) and are characterized in this study utilizing 3-D seismic and well logs. Key stratigraphic surfaces between maximum flooding surfaces (MFS-9 to MFS-10) demonstrate how marine regression and transgression impact the stacking pattern of the thick sands and overlying seals, influencing the overall potential for CO2 storage. One of the main uncertainties when assessing CO2 storage resources at different scales is to determine the fraction of the pore space within a formation that is practically accessible for storage. The goal of the modeling section of this project is to address the uncertainty related to the static parameters affecting calculations of available pore space by creating facies and porosity geostatistical models based on the spatial variation of the available data. P50 values for CO2 storage capacity range from 37.56 to 40.39 megatonnes (Mt), showing a narrow distribution of values for different realizations of the geostatistical models. An analysis of the pressure build-up effect on storage capacity was also performed, showing a reduction in capacity. This research further validates the impact of the current carbon tax credit program (45Q), applied directly to the storage resources results for the High Island field 10L using a simple NPV approach based on discounted cash flows. Several scenarios are assessed, where the main variables are the duration of the applicability of the tax credit, number of injection wells, and total storage capacity. Results are measured in terms of the cost of capture required for a project to be economic, given previous assumptions.

Book Geological reservoir characterization of a CO2 storage site

Download or read book Geological reservoir characterization of a CO2 storage site written by R.A. Chadwick and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Adapted Reservoir Characterization for Monitoring and Uncertainty Analysis of CO2 Storage

Download or read book Adapted Reservoir Characterization for Monitoring and Uncertainty Analysis of CO2 Storage written by Ekaterina Sergienko and published by . This book was released on 2012 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: Risk analysis of CO2 geological storage involves the simulation of the dynamics of the storage process and the evaluation of the probability of the possible leakage events. The approach followed here focuses on Gaussian Process response surface modelling in order to reduce the number of calls to the expensive reservoir simulator. Three major problems related to uncertainty analysis of CO2 storage are addressed: 1. Injection well placement 2. Reliability estimation 3. Reliability sensitivity analysis To tackle the first problem we provide a response surface method to handle discrete parameters (well positions) and discrete functional outputs to treat responses varying trough time (reservoir pressure evolutions). In addition, we introduce a new method for modelling functional outputs based on curves characterization and involving shape invariant model. To address the reliability problem, we introduce a subset simulation algorithm linked with the Gaussian Process model. It involves adaptive experimental design refinement and the model updating. To solve the last problem we suggest a new method for reliability sensitivity analysis. It is based on a perturbation of a probability distribution of input variables in order to evaluate which one contributes the most in the variability of the failure probability. All the proposed methods have been numerically tested on analytical and CO2 storage examples.

Book Geological Carbon Storage

    Book Details:
  • Author : Stéphanie Vialle
  • Publisher : John Wiley & Sons
  • Release : 2018-11-12
  • ISBN : 1119118662
  • Pages : 364 pages

Download or read book Geological Carbon Storage written by Stéphanie Vialle and published by John Wiley & Sons. This book was released on 2018-11-12 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geological Carbon Storage Subsurface Seals and Caprock Integrity Seals and caprocks are an essential component of subsurface hydrogeological systems, guiding the movement and entrapment of hydrocarbon and other fluids. Geological Carbon Storage: Subsurface Seals and Caprock Integrity offers a survey of the wealth of recent scientific work on caprock integrity with a focus on the geological controls of permanent and safe carbon dioxide storage, and the commercial deployment of geological carbon storage. Volume highlights include: Low-permeability rock characterization from the pore scale to the core scale Flow and transport properties of low-permeability rocks Fundamentals of fracture generation, self-healing, and permeability Coupled geochemical, transport and geomechanical processes in caprock Analysis of caprock behavior from natural analogues Geochemical and geophysical monitoring techniques of caprock failure and integrity Potential environmental impacts of carbon dioxide migration on groundwater resources Carbon dioxide leakage mitigation and remediation techniques Geological Carbon Storage: Subsurface Seals and Caprock Integrity is an invaluable resource for geoscientists from academic and research institutions with interests in energy and environment-related problems, as well as professionals in the field.

Book Site Characterization for CO2 Geologic Storage and Vice Versa  The Frio Brine Pilot as a Case Study

Download or read book Site Characterization for CO2 Geologic Storage and Vice Versa The Frio Brine Pilot as a Case Study written by Christine Doughty and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Careful site characterization is critical for successfulgeologic sequestration of CO2, especially for sequestration inbrine-bearing formations that have not been previously used for otherpurposes. Traditional site characterization techniques such asgeophysical imaging, well logging, core analyses, interference welltesting, and tracer testing are all valuable. However, the injection andmonitoring of CO2 itself provides a wealth of additional information. Rather than considering a rigid chronology in which CO2 sequestrationoccurs only after site characterization is complete, we recommend thatCO2 injection and monitoring be an integral part of thesite-characterization process. The advantages of this approach arenumerous. The obvious benefit of CO2 injection is to provide informationon multi-phase flow properties, which cannot be obtained from traditionalsitecharacterization techniques that examine single-phase conditions. Additionally, the low density and viscosity of CO2 compared to brinecauses the two components to flow through the subsurface differently, potentially revealing distinct features of the geology. Finally, tounderstand sequestered CO2 behavior in the subsurface, there is nosubstitute for studying the movement of CO2 directly. Making CO2injection part of site characterization has practical benefits as well. The infrastructure for surface handling of CO2 (compression, heating, local storage) can be developed, the CO2 injection process can bedebugged, and monitoring techniques can be field-tested. Prior to actualsequestration, small amounts of CO2 may be trucked in. Later, monitoringaccompanying the actual sequestration operations may be used tocontinually refine and improve understanding of CO2 behavior in thesubsurface.

Book Pre injection Reservoir Characterization for CO2 Storage in the Inner Continental Shelf of the Texas Gulf of Mexico

Download or read book Pre injection Reservoir Characterization for CO2 Storage in the Inner Continental Shelf of the Texas Gulf of Mexico written by Reinaldo Jose Sabbagh and published by . This book was released on 2017 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: The injection of CO2 into the subsurface (carbon capture and storage; CCS) is the most viable approach to significantly reduce industrial emissions of greenhouse gasses to the atmosphere. The inner continental shelf of the northern Gulf of Mexico has incredible potential for CO2 storage. This study quantitatively evaluates the CO2 storage capacity of the Lower Miocene brine-filled sandstones in the inner continental shelf of the Texas Gulf of Mexico using 3D seismic and well log data. The first part of this work investigates the relationship between elastic properties and reservoir properties (e.g., porosity, mineralogy, and pore fluid) of the Lower Miocene section using rock physics modeling and simultaneous seismic inversion. The elastic properties are related to porosity, mineralogy and pore fluid using rock physics models. These rock physics transforms are then applied to the seismically derived elastic properties to estimate the porosity and lithology away from the wells. The porosity and lithology distribution derived using this quantitative method can be interpreted to predict the best areas for CO2 storage in the inner continental shelf of the Texas Gulf of Mexico. The second part of this work studies the effect that CO2 has on the elastic properties of the Lower Miocene rocks using fluid substitution, amplitude variation with angle (AVA), and statistical classification to determine the ability of the seismic method to successfully monitor CO2 injected into the subsurface. The velocities and density well logs were modeled with different fluid saturations. To characterize the seismic properties corresponding to these different fluid saturations, the AVA responses and probability density functions were calculated and used for statistical classification. The AVA modeling shows a high sensitivity to CO2 due to the soft clastic framework of the Lower Miocene sandstones. The statistical classification successfully discriminates between brine and CO2 saturation using Vp/Vs and P-impedance. These results shows that the Lower Miocene sandstones have the capacity to host CO2, and that the CO2 injected in these rocks is likely to be successfully monitored using seismic methods.

Book CO2 Reservoir Oil Miscibility

Download or read book CO2 Reservoir Oil Miscibility written by Dayanand Saini and published by Springer. This book was released on 2018-06-25 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: This SpringerBrief critically examines the latest experimental and non-experimental approaches used for the fast and reliable characterization and determination of CO2-reservoir oil miscibility in terms of the minimum miscibility pressure (MMP). This book serves as a one-stop source for developing an enhanced understanding of these available methods, and specifically documents, analyses, and evaluates their suitability and robustness for depicting and characterizing the phenomenon of CO2-reservoir oil miscibility in a fast and cost-effective manner. Such information can greatly assist a project team in selecting an appropriate MMP determination method as per the project’s need at a given project’s stage, be that screening, design, or implementation. CO2-Reservoir Oil Miscibility: Experiential and Non-Experimental Characterization and Determination Approaches will be of interest to petroleum science and engineering professionals, researchers, and undergraduate and graduate students engaged in CO2 enhanced oil recovery (EOR) and/or simultaneous CO2-EOR and storage projects and related research. It may also be of interest to engineering and management professionals within the petroleum industry who have responsibility for implementing CO2-EOR projects.

Book Geological CO2 Storage Characterization

Download or read book Geological CO2 Storage Characterization written by Ronald C. Surdam and published by Springer. This book was released on 2013-12-07 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book investigates geological CO2 storage and its role in greenhouse gas emissions reduction, enhanced oil recovery, and environmentally responsible use of fossil fuels. Written for energy/environmental regulators at every level of government (federal, state, etc.), scientists/academics, representatives from the power and fossil energy sectors, NGOs, and other interested parties, this book uses the characterization of the Rock Springs Uplift site in Wyoming as an integrated case study to illustrate the application of geological CO2 storage science, principles, and theory in a real-world scenario.

Book Geological Storage of CO2 in Deep Saline Formations

Download or read book Geological Storage of CO2 in Deep Saline Formations written by Auli Niemi and published by Springer. This book was released on 2018-07-21 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers readers a comprehensive overview, and an in-depth understanding, of suitable methods for quantifying and characterizing saline aquifers for the geological storage of CO2. It begins with a general overview of the methodology and the processes that take place when CO2 is injected and stored in deep saline-water-containing formations. It subsequently presents mathematical and numerical models used for predicting the consequences of CO2 injection. This book provides descriptions of relevant experimental methods, from laboratory experiments to field scale site characterization and techniques for monitoring spreading of the injected CO2 within the formation. Experiences from a number of important field injection projects are reviewed, as are those from CO2 natural analog sites. Lastly, the book presents relevant risk management methods. Geological storage of CO2 is widely considered to be a key technology capable of substantially reducing the amount of CO2 released into the atmosphere, thereby reducing the negative impacts of such releases on the global climate. Around the world, projects are already in full swing, while others are now being initiated and executed to demonstrate the technology. Deep saline formations are the geological formations considered to hold the highest storage potential, due to their abundance worldwide. To date, however, these formations have been relatively poorly characterized, due to their low economic value. Accordingly, the processes involved in injecting and storing CO2 in such formations still need to be better quantified and methods for characterizing, modeling and monitoring this type of CO2 storage in such formations must be rapidly developed and refined.

Book International Symposium on Site Characterization for CO2Geological Storage

Download or read book International Symposium on Site Characterization for CO2Geological Storage written by Chin-Fu Tsang and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

Book Modeling Oil Production  CO2 Injection and Associated Storage in Depleted Oil Reservoirs

Download or read book Modeling Oil Production CO2 Injection and Associated Storage in Depleted Oil Reservoirs written by Srikanta Mishra and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Midwest Regional Carbon Sequestration Partnership has been investigating various reservoir characterization and modeling technologies as part of its commercial-scale implementation of carbon dioxide injection for geologic storage in multiple Silurian carbonate pinnacle reefs in northern Michigan, USA. This paper compares multiple reservoir modeling approaches for history-matching oil production and CO2 injection responses, and estimating associated storage, to characterize these small spatial footprint depleted reef reservoirs. The three approaches considered are: fully compositional simulation, black-oil with pseudo-miscibility treatment, and capacitance resistance modeling (CRM). Modeling results from three reefs illustrating each modeling approach are presented, and their applicability and limitations with respect to data needs and modeling objectives are discussed.

Book Special Issue   Site Characterization for Geological Storage of CO2

Download or read book Special Issue Site Characterization for Geological Storage of CO2 written by and published by . This book was released on 2008 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: