EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Characterization of Process and Radiation Induced Defects in Si and Ge Using Conventional Deep Level Transient Spectroscopy  DLTS  and Laplace DLTS

Download or read book Characterization of Process and Radiation Induced Defects in Si and Ge Using Conventional Deep Level Transient Spectroscopy DLTS and Laplace DLTS written by Cloud Nyamhere and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Defects in semiconductors are crucial to device operation, as they can either be beneficial or detrimental to the device operation depending on the application. For efficient devices it is important to characterize the defects in semiconductors so that those defects that are bad are eliminated and those that are useful can be controllably introduced. In this thesis, deep level transient spectroscopy (DLTS) and high-resolution Laplace-DLTS (LDLTS) have been used to characterize deep level defects introduced by energetic particles (electrons or Ar ions) and during metallization using electron beam deposition on silicon and germanium. Schottky diodes were used to form the space-charge region required in DLTS and LDLTS measurements. From the DLTS and LDLTS measurements the activation enthalpy required to ionize a trap, ET, and defect carrier capture cross-section?? were deduced. LDLTS proved particularly useful since it could separate deep levels with closely spaced energy levels (the limit being defects with emission rates separated by a factor greater than 2), which was not possible by conventional DLTS. The majority carrier traps in gallium-, boron- and phosphorus-doped silicon introduced after MeV electron irradiation and during electron beam deposition have been characterized, and several defects such as the divacancy, A-center and E-center and other complex defects were observed after the two processes. Annealing studies have shown that all deep levels are removed in silicon after annealing between 500ʻC-600ʻC. Both electron and hole traps introduced in n-type germanium by electron irradiation, Ar sputtering and after electron beam deposition have been characterized using DLTS and LDLTS. The E-center is the most common defect introduced in germanium after MeV electron irradiation and during electron beam deposition. Annealing shows that defects in germanium were removed by low thermal budget of between 350ʻC - 400ʻC and it has been deduced that the E-center (V-Sb) in germanium anneals by diffusion. The identification of some of the defects was achieved by using defect properties such as defect signature, introduction rates, annealing behavior and annealing mechanisms, and then comparing these properties to theoretical defect models and results from other techniques.

Book Physics Briefs

Download or read book Physics Briefs written by and published by . This book was released on 1994 with total page 1170 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Index to Theses with Abstracts Accepted for Higher Degrees by the Universities of Great Britain and Ireland and the Council for National Academic Awards

Download or read book Index to Theses with Abstracts Accepted for Higher Degrees by the Universities of Great Britain and Ireland and the Council for National Academic Awards written by and published by . This book was released on 2001 with total page 842 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theses on any subject submitted by the academic libraries in the UK and Ireland.

Book Laplace Transform Deep Level Transient Spectroscopic Study on Pld Grown Zno

Download or read book Laplace Transform Deep Level Transient Spectroscopic Study on Pld Grown Zno written by Lok-Ping Ho and published by . This book was released on 2017-01-27 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation, "Laplace Transform Deep Level Transient Spectroscopic Study on PLD Grown ZnO" by Lok-ping, Ho, 何樂平, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: The fundamental physics and techniques employed in Laplace transform deep level transient spectroscopy (L-DLTS) are reviewed. A Laplace-DLTS system has been constructed. The high resolving power of this system has been demonstrated experimentally. The L-DLTS system was applied to characterize the defects in undoped n-type ZnO thin film grown by the pulsed laser deposition (PLD) method. A 0.3 eV deep trap has been identified. The formations of Ec-0.39eV and Ec-0.20eVcan be enhanced when the sample surface is seriously damaged by high temperature annealing.AnEc-0.25eV trap is identified in the freshly grown samples, but would disappear after the storage of 3 months. Copper doped n-type ZnO thin film samples with low carrier concentration (n 〖10〗 DEGREES16 〖cm〗 DEGREES(-3)) were investigated by using both conventional and Laplace DLTS techniques. Positive DLTS signal peaks were detected that are suspected to be contributed by the minority carrier (hole carrier) emission. A physics model involving the inversion layer of a metal-insulator-semiconductor contact has been invoked to interpret the hole carrier concentration existing near the metal-semiconductor interface. Expression for the defect concentration is determined as a function of the temperature of DLTS peaks. AnEv+0.6eV defect with high concentration (N_T 〖10〗 DEGREES17 〖cm〗 DEGREES(-3)) was detected. The concentration of Ev+0.6eVcan be enhanced when the annealing temperature was increased from 750 to 900 degree C. Subjects: Laplace transformation Zinc oxide - Defects Deep level transient spectroscopy

Book Semiconductor Material and Device Characterization

Download or read book Semiconductor Material and Device Characterization written by Dieter K. Schroder and published by John Wiley & Sons. This book was released on 2015-06-29 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Third Edition updates a landmark text with the latest findings The Third Edition of the internationally lauded Semiconductor Material and Device Characterization brings the text fully up-to-date with the latest developments in the field and includes new pedagogical tools to assist readers. Not only does the Third Edition set forth all the latest measurement techniques, but it also examines new interpretations and new applications of existing techniques. Semiconductor Material and Device Characterization remains the sole text dedicated to characterization techniques for measuring semiconductor materials and devices. Coverage includes the full range of electrical and optical characterization methods, including the more specialized chemical and physical techniques. Readers familiar with the previous two editions will discover a thoroughly revised and updated Third Edition, including: Updated and revised figures and examples reflecting the most current data and information 260 new references offering access to the latest research and discussions in specialized topics New problems and review questions at the end of each chapter to test readers' understanding of the material In addition, readers will find fully updated and revised sections in each chapter. Plus, two new chapters have been added: Charge-Based and Probe Characterization introduces charge-based measurement and Kelvin probes. This chapter also examines probe-based measurements, including scanning capacitance, scanning Kelvin force, scanning spreading resistance, and ballistic electron emission microscopy. Reliability and Failure Analysis examines failure times and distribution functions, and discusses electromigration, hot carriers, gate oxide integrity, negative bias temperature instability, stress-induced leakage current, and electrostatic discharge. Written by an internationally recognized authority in the field, Semiconductor Material and Device Characterization remains essential reading for graduate students as well as for professionals working in the field of semiconductor devices and materials. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Book Computational Characterization of Radiation induced Defect Dynamics and Material Response

Download or read book Computational Characterization of Radiation induced Defect Dynamics and Material Response written by Miaomiao Jin and published by . This book was released on 2019 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Material degradation due to radiation damage poses serious concern on the reliability and durability of any reactor design. To understand material performance under the extreme environments combining high temperature and intense irradiation, the response of radiation damage must be meticulously analyzed, both experimentally and computationally. These efforts will not only bridge the knowledge gap in the fundamental understanding of physical processes, but also allow for prediction of material behavior under a variety of conditions and development of novel materials with superior radiation tolerance. This thesis investigates multiple aspects of radiation damage in materials using various computational methods over a wide range of time and length scale, including atomistic description of defect dynamics, multiscale simulations of radiation processes, and artificial intelligence prediction of material responses based on experimental studies. Firstly, to resolve the fundamental mechanisms of radiation-induced behavior, the traditional molecular dynamics simulations on single-atom damage cascade is extended by developing an algorithm to appropriately introduce numerous consecutive cascades; hence, an experimental dose level on the order of dpa (displacement per atom) can be achieved to enable realistic understanding of observed material responses. It has been utilized to examine the radiation behaviors in solid-solution alloys and nanocrystalline metals such as defect dynamics and grain boundary migration. Secondly, to break the intrinsic limitation of scale in atomistic simulations, a multiscale microstructural evolution framework that links binary-collision approximation, molecular dynamics and cluster dynamics is built to describe mesoscale experimental observations. It is used to successfully explain the non-power-law defect distribution in irradiated tungsten. This tool can be generalized to study the spatial dependent defect evolution in materials under ion irradiation. Finally, to bypass the physics-based complexity of describing materials evolution in real applications, a holistic view enabled by machine learning techniques is utilized, and applied to predict the onset of void swelling in metals with a manually collection of data from experimental studies. The model has generated satisfying results for prediction of unseen data based on material properties and experimental parameters.

Book Halide Perovskites

Download or read book Halide Perovskites written by Tze-Chien Sum and published by John Wiley & Sons. This book was released on 2019-03-25 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real insight from leading experts in the field into the causes of the unique photovoltaic performance of perovskite solar cells, describing the fundamentals of perovskite materials and device architectures. The authors cover materials research and development, device fabrication and engineering methodologies, as well as current knowledge extending beyond perovskite photovoltaics, such as the novel spin physics and multiferroic properties of this family of materials. Aimed at a better and clearer understanding of the latest developments in the hybrid perovskite field, this is a must-have for material scientists, chemists, physicists and engineers entering or already working in this booming field.

Book Novel Applications of Deep Level Transient Spectroscopy  DLTS  for QASPR Devices

Download or read book Novel Applications of Deep Level Transient Spectroscopy DLTS for QASPR Devices written by and published by . This book was released on 2015 with total page 33 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Electrical Characterization of Radiation Induced Defects in 3C SiC

Download or read book Electrical Characterization of Radiation Induced Defects in 3C SiC written by Matthew John Cabral and published by . This book was released on 2013 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Formation and Growth of Irradiation induced Defect Structures in Ceria

Download or read book Formation and Growth of Irradiation induced Defect Structures in Ceria written by Bei Ye and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Radiation damage effects are of primary concern for materials used in nuclear energy production. In this study, emphasis was given to the processes of formation and growth of radiation-induced defect structures in oxide fuels. Due to the natural complexity of oxide fuels, which consist of both a metal sublattice and an oxygen sublattice, radiation effects are much more complex in oxides than in metals. As a result, there are many radiation effects that are still not well understood despite numerous research efforts engaged in the past. This study was aimed to help clarify some of these effects, such as the evolution process of dislocation structures during irradiation and how it is affected by various irradiation conditions. In order to develop an understanding of the radiation damage process in the common fluorite-type ceramic oxide fuel, ceria (CeO2) was selected as a surrogate material of UO2 for this study. According to previous studies, ceramic materials with a fluorite crystal structure possess high radiation tolerance. Using CeO2 single crystals allowed for the observation of the intrinsic behavior of defects while excludes the effects of grain boundaries. To reveal the basic mechanisms responsible for the evolution of microstructure induced by irradiations, a group of coordinated experiments were designed by incorporating multiple techniques consisting of ion irradiation, in situ transmission electron microscopy (TEM) and ex situ TEM observation. Radiation damage in the materials was induced by irradiating them with krypton and xenon ions from an accelerator. Irradiation experiments were conducted at three temperature regimes: room temperature, 600°C and 800°C, in order to inspect the temperature dependence of atomic defect transportation. Ion energies were carefully chosen for low and high energy irradiations in order to produce a deposited ion peak within the specimen at low energy and a uniform distribution of defects at high energy. In situ TEM analysis was used in order to take advantage of real-time recording of defect nucleation and growth under gas ion irradiation, and ex situ TEM analysis was used to characterize the radiation-induced features at high image resolution along with complementary elemental analysis techniques such as X-ray energy dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS). In addition to the experimental investigation, a rate theory model, as a part of the multi-scale simulation approach, was employed to study the growth behaviors of dislocation loops. The computational results were found to be consistent with the experimental observations.

Book Silicon Carbide

Download or read book Silicon Carbide written by Wolfgang J. Choyke and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 911 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the 1997 publication of "Silicon Carbide - A Review of Fundamental Questions and Applications to Current Device Technology" edited by Choyke, et al., there has been impressive progress in both the fundamental and developmental aspects of the SiC field. So there is a growing need to update the scientific community on the important events in research and development since then. The editors have again gathered an outstanding team of the world's leading SiC researchers and design engineers to write on the most recent developments in SiC.

Book Crystal Growth and Evaluation of Silicon for VLSI and ULSI

Download or read book Crystal Growth and Evaluation of Silicon for VLSI and ULSI written by Golla Eranna and published by CRC Press. This book was released on 2014-12-08 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon, as a single-crystal semiconductor, has sparked a revolution in the field of electronics and touched nearly every field of science and technology. Though available abundantly as silica and in various other forms in nature, silicon is difficult to separate from its chemical compounds because of its reactivity. As a solid, silicon is chemical

Book Fundamentals of Silicon Carbide Technology

Download or read book Fundamentals of Silicon Carbide Technology written by Tsunenobu Kimoto and published by John Wiley & Sons. This book was released on 2014-11-24 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction and up-to-date reference to SiC power semiconductor devices covering topics from material properties to applications Based on a number of breakthroughs in SiC material science and fabrication technology in the 1980s and 1990s, the first SiC Schottky barrier diodes (SBDs) were released as commercial products in 2001. The SiC SBD market has grown significantly since that time, and SBDs are now used in a variety of power systems, particularly switch-mode power supplies and motor controls. SiC power MOSFETs entered commercial production in 2011, providing rugged, high-efficiency switches for high-frequency power systems. In this wide-ranging book, the authors draw on their considerable experience to present both an introduction to SiC materials, devices, and applications and an in-depth reference for scientists and engineers working in this fast-moving field. Fundamentals of Silicon Carbide Technology covers basic properties of SiC materials, processing technology, theory and analysis of practical devices, and an overview of the most important systems applications. Specifically included are: A complete discussion of SiC material properties, bulk crystal growth, epitaxial growth, device fabrication technology, and characterization techniques. Device physics and operating equations for Schottky diodes, pin diodes, JBS/MPS diodes, JFETs, MOSFETs, BJTs, IGBTs, and thyristors. A survey of power electronics applications, including switch-mode power supplies, motor drives, power converters for electric vehicles, and converters for renewable energy sources. Coverage of special applications, including microwave devices, high-temperature electronics, and rugged sensors. Fully illustrated throughout, the text is written by recognized experts with over 45 years of combined experience in SiC research and development. This book is intended for graduate students and researchers in crystal growth, material science, and semiconductor device technology. The book is also useful for design engineers, application engineers, and product managers in areas such as power supplies, converter and inverter design, electric vehicle technology, high-temperature electronics, sensors, and smart grid technology.

Book Defect Trapping in InGaAsN Measured by Deep Level Transient Spectroscopy

Download or read book Defect Trapping in InGaAsN Measured by Deep Level Transient Spectroscopy written by and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep-level defects in p-type InGaAsN films grown by metal-organic chemical vapor deposition and molecular-beam epitaxy are investigated by deep-level transient spectroscopy (DLTS). A series of as-grown samples having varying N and In composition showed a deep hole trap with an activation energy ranging from 0.6 to 0.8 eV and an electron trap with an activation energy ranging from 0.1 to 0.4 eV. The electron trap activation energy decreased with increasing N content. Optical DLTS measurements similarly revealed the shallow electron traps, but did not show the deeper hole-trap peaks. A deep electron trap was detected when using forward bias to inject electrons during pulse filling. Together, the deep electron trap and deep hole trap may form a recombination center. This also suggests that generated carriers could recombine quickly, and therefore, such a recombination center may have prevented a deep-trap signal during optical DLTS.

Book Studies of Deep Level Transient Spectroscopy of DX Centers in GaAlAs

Download or read book Studies of Deep Level Transient Spectroscopy of DX Centers in GaAlAs written by and published by . This book was released on 1991 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt: DX centers in Al{sub 0.38}Ga{sub 0.62}As doped with Te have been studied by Deep Level Transient Spectroscopy (DLTS) as a function of uniaxial stress. No splitting nor broadening of the DLTS peaks were observed. However, the peak positions and heights depend on the stress and its directions. The results have been analyzed by comparison with existing models and hydrostatic pressure measurements.

Book Defects and Impurities in Silicon Materials

Download or read book Defects and Impurities in Silicon Materials written by Yutaka Yoshida and published by Springer. This book was released on 2016-03-30 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book emphasizes the importance of the fascinating atomistic insights into the defects and the impurities as well as the dynamic behaviors in silicon materials, which have become more directly accessible over the past 20 years. Such progress has been made possible by newly developed experimental methods, first principle theories, and computer simulation techniques. The book is aimed at young researchers, scientists, and technicians in related industries. The main purposes are to provide readers with 1) the basic physics behind defects in silicon materials, 2) the atomistic modeling as well as the characterization techniques related to defects and impurities in silicon materials, and 3) an overview of the wide range of the research fields involved.

Book The Physics of Semiconductor Devices

Download or read book The Physics of Semiconductor Devices written by R. K. Sharma and published by Springer. This book was released on 2019-01-31 with total page 1299 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book disseminates the current knowledge of semiconductor physics and its applications across the scientific community. It is based on a biennial workshop that provides the participating research groups with a stimulating platform for interaction and collaboration with colleagues from the same scientific community. The book discusses the latest developments in the field of III-nitrides; materials & devices, compound semiconductors, VLSI technology, optoelectronics, sensors, photovoltaics, crystal growth, epitaxy and characterization, graphene and other 2D materials and organic semiconductors.