EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Characterization of Ambient Aerosol Composition and Formation Mechanisms and Development of Quantification Methodologies Utilizing ATOFMS

Download or read book Characterization of Ambient Aerosol Composition and Formation Mechanisms and Development of Quantification Methodologies Utilizing ATOFMS written by Xueying Qin and published by . This book was released on 2007 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerosols are solid or liquid particles suspended in the air. They are generated from a range of natural and anthropogenic sources. Aerosols also experience various reactions such as photo-oxidation and aqueous-phase processing, which constantly change their physical and chemical properties. Therefore, in order to determine the emission inventory, it is important to study aerosol reactions and transformation mechanisms in ambient atmosphere. The research described in this dissertation aimed to characterize temporal, spatial, and seasonal variations on ambient aerosol chemical compositions and formation mechanisms. The results contribute to the understanding of air pollution, climate change, and human health problems, and to devising necessary strategies and policies to resolve these problems.

Book Determination of the spatial and temporal variability of size resolved PM2 5 composition and mixing state in multiple regions in California

Download or read book Determination of the spatial and temporal variability of size resolved PM2 5 composition and mixing state in multiple regions in California written by Kimberly Prather and published by California Air Resources Board. This book was released on 2009-12-01 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Final report for California Air Resources Board contract 04-336. For an abstract and link to full text, please see: http://www.arb.ca.gov/research/single-project.php?row_id=64974

Book Molecular Characterization of Organic Aerosol by Mass Spectrometry

Download or read book Molecular Characterization of Organic Aerosol by Mass Spectrometry written by Yuqian Gao and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic aerosol is a major constituent of atmospheric fine particles, especially over continental regions. These particles adversely affect human health and global climate. A significant fraction of organic aerosol is considered to be from the oxidation products of ozone and volatile organic compounds, which are called secondary organic aerosol (SOA). To study the formation mechanisms of secondary organic aerosol, it is important to characterize their molecular composition. The composition of secondary organic aerosol is very complex including thousands of species with molecular weight up to over a thousand Dalton. Methods utilized for the identification of these oxidation products involve advanced mass spectrometry techniques. In this dissertation, three mass spectrometry techniques were developed to study the molecular composition of organic aerosol. Firstly, online nano-aerosol sample deposition methods for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry was developed to incorporate matrix particles directly with analyte particles onto a conventional MALDI plate. Secondly, a microsampling and analysis technique was developed in order to collect microgram samples and analyze them with high performance mass spectrometry. With this technique, the molecular composition of particle phase SOA at a low mass loading can be elucidated, which provides information about SOA formation at the early stages. A species with the (neutral molecule) formula C 17 H 26 O 8 (MW 358) increased substantially in intensity relative to other products as the mass loading decreased. Tandem mass spectrometry (MS n) of this species showed it to be a dimer of C 9 H 14 O 4 and C 8 H 12 O 4, most likely pinic acid and terpenylic acid, respectively. This species is likely to be critical at the early stages of SOA formation. Thirdly, ambient secondary electrospray ionization (ESI) source was designed to characterize the molecular composition of both gas and particle phases SOA online. This ion source was demonstrated to be applicable to a wide range of mass spectrometers having an ambient inlet. This technique provides a tool to acquire detailed information about possible SOA nucleation agents. A species with the (neutral molecule) formula C 20 H 36 O 6 (MW 372) was found in the gas-phase products of SOA, which could be critical for the new particle formation of SOA. Tandem mass spectrometry (MS n) of this species showed it to be a dimer of an organic hydroperoxide C 10 H 18 O 3, which is likely formed via OH-initiated oxidation pathway.

Book Enabling the Identification  Quantification  and Characterization of Organics in Complex Mixtures to Understand Atmospheric Aerosols

Download or read book Enabling the Identification Quantification and Characterization of Organics in Complex Mixtures to Understand Atmospheric Aerosols written by Gabriel Avram Isaacman and published by . This book was released on 2014 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: Particles in the atmosphere are known to have negative health effects and important but highly uncertain impacts on global and regional climate. A majority of this particulate matter is formed through atmospheric oxidation of naturally and anthropogenically emitted gases to yield highly oxygenated secondary organic aerosol (SOA), an amalgamation of thousands of individual chemical compounds. However, comprehensive analysis of SOA composition has been stymied by its complexity and lack of available measurement techniques. In this work, novel instrumentation, analysis methods, and conceptual frameworks are introduced for chemically characterizing atmospherically relevant mixtures and ambient aerosols, providing a fundamentally new level of detailed knowledge on their structures, chemical properties, and identification of their components. This chemical information is used to gain insights into the formation, transformation and oxidation of organic aerosols. Biogenic and anthropogenic mixtures are observed in this work to yield incredible complexity upon oxidation, producing over 100 separable compounds from a single precursor. As a first step toward unraveling this complexity, a method was developed for measuring the polarity and volatility of individual compounds in a complex mixture using two-dimensional gas chromatography, which is demonstrated in Chapter 2 for describing the oxidation of SOA formed from a biogenic compound (longifolene: C15H24). Several major products and tens of substantial minor products were produced, but none could be identified by traditional methods or have ever been isolated and studied in the laboratory. A major realization of this work was that soft ionization mass spectrometry could be used to identify the molecular mass and formula of these unidentified compounds, a major step toward a comprehensive description of complex mixtures. This was achieved by coupling gas chromatography to high resolution time-of-flight mass spectrometry with vacuum ultraviolet (VUV) photo-ionization. Chapters 3 and 4 describe this new analytical technique and its initial application to determine the structures of unknown compounds and formerly unresolvable mixtures, including a complete description of the chemical composition of two common petroleum products related to anthropogenic emissions: diesel fuel and motor oil. The distribution of hydrocarbon isomers in these mixtures - found to be mostly of branched, cyclic, and saturated - is described with unprecedented detail. Instead of measuring average bulk aerosol properties, the methods developed and applied in this work directly measure the polarity, volatility, and structure of individual components to allow a mechanistic understanding of oxidation processes. Novel characterizations of these complex mixtures are used to elucidate the role of structure and functionality in particle-phase oxidation, including in Chapter 4 the first measurements of relative reaction rates in a complex hydrocarbon particle. Molecular structure is observed to influence particle-phase oxidation in unexpected and important ways, with cyclization decreasing reaction rates by ~30% and branching increasing reaction rates by ~20-50%. The observed structural dependence is proposed to result in compositional changes in anthropogenic organic aerosol downwind of urban areas, which has been confirmed in subsequent work by applying the techniques described here. Measurement of organic aerosol components is extended to ambient environments through the development of instrumentation with the unprecedented capability to measure hourly concentrations and gas/particle partitioning of individual highly oxygenated organic compounds in the atmosphere. Chapters 5 and 6 describe development of new procedures and hardware for the calibration and analysis of oxygenates using the Semi-Volatile Thermal desorption Aerosol Gas chromatograph (SV-TAG), a custom instrument for in situ quantification of gas- and particle-phase organic compounds in the atmosphere. High time resolution measurement of oxygenated compounds is achieved through a reproducible and quantitative methodology for in situ "derivatization"--Replacing highly polar functional groups that cannot be analyzed by traditional gas chromatography with less polar groups. Implementation of a two-channel sampling system for the simultaneous collection of particle-phase and total gas-plus-particle phase samples allows for the first direct measurements of gas/particle partitioning in the atmosphere, significantly advancing the study of atmospheric composition and variability, as well as the processes governing condensation and re-volatilization. This work presents the first in situ measurements of a large suite of highly oxygenated biogenic oxidation products in both the gas- and particle-phase. Isoprene, the most ubiquitous biogenic emission, oxidizes to form 2-methyltetrols and C5 alkene triols, while [alpha]-pinene, the most common monoterpene, forms pinic, pinonic, hydroxyglutaric, and other acids. These compounds are reported in Chapter 7 with unprecedented time resolution and are shown for the first time to have a large gas-phase component, contrary to typical assumptions. Hourly comparisons of these products with anthropogenic aerosol components elucidate the interaction of human and natural emissions at two rural sites: the southeastern, U.S. and Amazonia, Brazil. Anthropogenic influence on SOA formation is proposed to occur through the increase in liquid water caused by anthropogenic sulfate. Furthermore, these unparalleled observations of gas/particle partitioning of biogenic oxidation products demonstrate that partitioning of oxygenates is unexpectedly independent of volatility: many volatile, highly oxygenated compounds have a large particle-phase component that is poorly described by traditional models. These novel conclusions are reached in part by applying the new frameworks developed in previous chapters to understand the properties of unidentified compounds, demonstrating the importance of detailed characterization of atmospheric organic mixtures. Comprehensive analysis of anthropogenic and biogenic emissions and oxidation product mixtures is coupled in this work with high time-resolution measurement of individual organic components to yield significant insights into the transformations of organic aerosols. Oxidation chemistry is observed in both laboratory and field settings to depend on molecular properties, volatility, and atmospheric composition. However, this work demonstrates that these complex processes can be understood through the quantification of individual known and unidentified compounds, combined with their classification into descriptive frameworks.

Book New Approaches for the Chemical and Physical Characterization of Aerosols Using a Single Particle Mass Spectrometry Based Technique

Download or read book New Approaches for the Chemical and Physical Characterization of Aerosols Using a Single Particle Mass Spectrometry Based Technique written by Matthew Todd Spencer and published by . This book was released on 2007 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comparison of mass spectra generated from petrochemical particles was made to light duty vehicle (LDV) and heavy duty diesel vehicle (HDDV) particle mass spectra. This comparison has given us new insight into how to differentiate between particles from these two sources.

Book Determination of the Spatial and Temporal Variability of Size resolved P   25 Composition and Mixing State in Multiple Regions in California

Download or read book Determination of the Spatial and Temporal Variability of Size resolved P 25 Composition and Mixing State in Multiple Regions in California written by and published by . This book was released on 2009 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Analytical Chemistry of Aerosols

Download or read book Analytical Chemistry of Aerosols written by Kvetoslav R. Spurny and published by CRC Press. This book was released on 1999-04-23 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Until the 1980s, researchers studied and measured only the physical properties of aerosols. Since the 80s, however, interest in the physicochemcal properties of aerosols has grown tremendously. Scientists in environmental hygiene, medicine, and toxicology have recognized the importance held by the chemical composition and properties of aerosols and the interactions of inhaled, "bad" aerosols. This book offers the first comprehensive treatment of modern aerosol analytical methods, sampling and separation procedures, and environmental applications, and offers critical reviews of the latest literature. This important field has developed rapidly in the last 15 years, but until now, no book effectively summarized or analyzed the existing research. Analytical Chemistry of Aerosols reviews procedures, techniques, and trends in the measurement and analysis of atmospheric aerosols. With contributions from acknowledged, international experts, the book discusses various methods of bulk analysis, single particle analysis, and the analysis of special aerosol systems, including fibrous and bacterial aerosols.

Book Advances and Applications of Mass Spectral Techniques for the Characterization of Atmospheric Aerosol Particles

Download or read book Advances and Applications of Mass Spectral Techniques for the Characterization of Atmospheric Aerosol Particles written by Lindsay Erighn Hatch and published by . This book was released on 2012 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerosol particles are ubiquitous in the atmosphere and induce significant impacts on human health and climate that depend on their physical and chemical properties, such as size, composition, and mixing state (chemical associations). Measurements of aerosol composition at the single-particle level are necessary to better understand these effects. Aerosol time-of-flight mass spectrometry (ATOFMS) is able to monitor the size and chemical composition of individual particles in real time. In this doctoral research, ATOFMS analysis was extended to identify new mass spectral markers and improve the potential for quantitative measurements. Development of novel instrumentation was also undertaken. Ion markers indicative of organosulfate compounds were identified in ATOFMS mass spectra collected in Atlanta, GA. In this study, the mixing state and temporal behavior of particulate organosulfate compounds were observed for the first time. Organosulfates were overwhelmingly detected in carbonaceous submicron particles and the temporal trends indicated that they likely formed by the daytime oxidation of isoprene followed by aqueous reaction with sulfate overnight. These results highlight the roles of mixing state and multi-phase reactivity on the formation of secondary organic aerosols. ATOFMS measurements of thermally-conditioned aerosol residuals obtained during the 2005 Study of Organic Aerosols in Riverside, CA were analyzed to determine the impacts of atmospheric aging on the laser desorption/ionization process. Coatings of secondary species suppressed the ionization efficiency, thereby impacting the mass spectral peak areas; however, a novel analysis method was found to correct these artifacts and produced strong agreement with collocated quantitative instrumentation. This new analysis technique was then applied to investigate the mixing-state dependence of aerosol volatility observed in Riverside. It was observed that particulate nitrate evaporated at different temperatures from different particle types (e.g., organic vs. biomass burning), which may influence the regional transport of nitrate species. ATOFMS provides important insights into size-resolved particle sources; however it heavily fragments most organic species, resulting in loss of the molecular information. Therefore, a novel chemical ionization mass spectrometer was developed to better characterize the molecular organic aerosol constituents. In particular, an ion funnel was incorporated into a home-built proton-transfer-reaction mass spectrometer. Initial characterization studies and ion simulations indicated that the ion funnel can provide high-efficiency ion transfer from the ionization region to the mass spectrometer. These results demonstrate the potential for this instrument to ultimately achieve highly sensitive analyses of organic aerosols.

Book Analysis of Atmospheric Aerosol Processes Using Single Particle Mass Spectrometry

Download or read book Analysis of Atmospheric Aerosol Processes Using Single Particle Mass Spectrometry written by Jeffrey Robert Whiteaker and published by . This book was released on 2002 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thermally Evolved   Separated Composition of Atmospheric Aerosols

Download or read book Thermally Evolved Separated Composition of Atmospheric Aerosols written by Yaping Zhang and published by . This book was released on 2015 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atmospheric organic aerosols are composed of thousands of individual compounds, interacting with climate through changes in aerosol optical properties and cloud interactions, and can be detrimental to human health. Aerosol mass spectrometry (MS) and gas chromatography (GC)-separated MS measurements have been utilized to better characterize the chemical composition of this material that comes from a variety of sources and experiences continuous oxidation while in the atmosphere. This dissertation describes the development of a novel rapid data analysis method for grouping of major components within chromatography-separated measurements and first application using thermal desorption aerosol gas chromatograph (TAG) -- MS data. Chromatograms are binned and inserted directly into a positive matrix factorization (PMF) analysis to determine major contributing components, eliminating the need for manual compound integrations of hundreds of resolved molecules, and incorporating the entirety of the eluting MS signal, including Unresolved Complex Mixtures (UCM) and decomposition products that are often ignored in traditional GC-MS analysis. Binned GC-MS data has three dimensions: (1) mass spectra index m/z, (2) bin number, and (3) sample number. PMF output is composed of two dimensions; factor profiles and factor time series. The specific arrangement of the input data (three dimensions of variation structured as a two dimensional matrix) in a two dimensional PMF analysis affects the structure of the PMF profiles and time series output. If mass spectra index is in the profile dimension, and bin number and sample number are in the time series dimension, PMF groups components into factors with similar mass spectra, such as major contributing individual compounds, UCM with similar functional composition, and homologous compound series. This type of PMF analysis is described as the binning method for chromatogram deconvolution, and is presented in Chapter 2. If the sample number is in the time series dimension, and the bin number and mass spectra index, arranged as mass spectra resolved retention time/chromatogram (bin number), are in the profile dimension, PMF groups components with similar time series trends. This type of PMF analysis is described as binning method for source apportionment, and is described in Chapter 3. The binning methods are compared to traditional compound integration methods using previously-collected hourly ambient samples from Riverside, CA during the 2005 Study of Organic Aerosols at Riverside (SOAR) field campaign, as discussed in Chapters 2-3. Further application of the binning method for source apportionment is performed on newly acquired hourly TAG data from East St. Louis, IL, operated as part of the 2013 St. Louis Air Quality Regional Study (SLAQRS). Major sources of biogenic secondary organic aerosol (SOA), anthropogenic primary organic aerosol (POA) were identified, as described in detail in Chapter 4. Finally, our PMF separation method was tested for reliability using primary and secondary sources in a controlled laboratory system. As shown in Chapter 5, we find that for application of PMF on receptor measurements, high signal intensity and unique measurement profiles, like those found in TAG chromatograms, are keys to successful source apportionment. The binning method with component separation by PMF may be a valuable analysis technique for other complex data sets that incorporate measurements (e.g., mass spectrometry, spectroscopy, etc.) with additional separations (e.g., volatility, hygroscopicity, electrical mobility, etc.).

Book Using Aerosol Time of flight Mass Spectrometry  ATOFMS  Data to Gain New Insights Into the Temporal Profiles  Composition  and Evolution of Individual Particles in the Troposphere

Download or read book Using Aerosol Time of flight Mass Spectrometry ATOFMS Data to Gain New Insights Into the Temporal Profiles Composition and Evolution of Individual Particles in the Troposphere written by Don-Yuan Liu and published by . This book was released on 2000 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Anthropogenic Particulate Source Characterization and Source Apportionment Using Aerosol Time of flight Mass Spectrometry

Download or read book Anthropogenic Particulate Source Characterization and Source Apportionment Using Aerosol Time of flight Mass Spectrometry written by Stephen Mark Toner and published by . This book was released on 2007 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods of measuring the chemical and physical properties of aerosols as well as proper source apportionment of ambient particles are necessary to provide insight as to the roles they play in the environment and their impact on human health. In addition, the ability to apportion ambient particles quickly and accurately will be very helpful for environmental and health agencies and for monitoring and enforcing emission standards by allowing such agencies to determine the primary source of aerosols in their monitoring areas. The goal of this dissertation is to provide a new approach for aerosol source apportionment using aerosol time-of-flight mass spectrometry (ATOFMS) single particle data. This goal was accomplished by determining unique mass spectral signatures for specific aerosol sources and by developing these signatures into a source signature library in which ambient ATOFMS data can be matched and apportioned. The creation of the source signature library (SSL) began with the characterization of specific sources themselves. Heavy duty diesel vehicle (HDDV) emissions were characterized using ATOFMS from a dynamometer study. The particle types detected for HDDVs were compared to those from a previous dynamometer study of gasoline powered light duty vehicles (LDV) to see if HDDV and LDV particles can be distinguished. A SSL was then created for the HDDV and LDV emissions to test the ability to properly apportion between the two sources on ambient ATOFMS data collected next to a major freeway using a SSL matching technique. This work demonstrated that the two sources are readily distinguishable in a fresh emission environment, and that the matching method is a valid means for apportioning ATOFMS data. The SSL was then extended for multiple specific sources as well as for non-source specific particles and was used to apportion the same freeway study particles; showing that the source matching method is able to accurately distinguish different particle sources and that there can be a large contribution from sources other than vehicles near a major freeway. Lastly, the SSL matching method was used to apportion ambient aerosols for two major non-US cities to show that the SSL matching technique is applicable to worldwide ambient ATOFMS data.

Book Aerosol Composition and Hygroscopicity Studies

Download or read book Aerosol Composition and Hygroscopicity Studies written by Armin Sorooshian and published by . This book was released on 2008 with total page 1040 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Characterization of Particulate Pollution by Aerosol Mass Spectrometry

Download or read book Characterization of Particulate Pollution by Aerosol Mass Spectrometry written by Courtney Leigh Herring and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Atmospheric aerosols impact human health, climate, and air pollution and arrive in the atmosphere by countless number of sources. One of the largest uncertainties in understanding these impacts is due to limitations in our understanding of the organic aerosol (OA) components. To understand this complex mixture of thousands of compounds accurate high-resolution chemical speciation is needed. An Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS or HR-AMS) was deployed in two separate month-long studies to measure atmospheric particulate pollution. The first study, at the Lovelace Respiratory Research Institute (LRRI), focused on the measurement of gasoline and diesel engine exhaust under various loads and dilutions in controlled chamber experiments. HR-AMS data demonstrated clean signal associated with 53 polycyclic aromatic hydrocarbon (PAH) compounds. PAHs are of interest due to their carcinogenic implication and negative health effects especially when associated with submicron particles. From this work a novel methodology was developed for quantifying these compounds by their molecular ion signal (P-MIP). In the second study, conducted in Yakima, WA, ambient wintertime pollution was characterized and the OA components were deconvolved using positive matrix factorization (PMF). This investigation resulted in the identification of two new amine associated factors which were identified by mass spectra peaks from six dominant amine ions (C3H8N+, C2H6N2+, C4H 10N+, C3H8N2 +, C5H12N+, and C6H 14N+). Amine ions are of interest to atmospheric research because of their implications on climate and formation of new particles. The unifying implication from both studies was the utilization of the HR-AMS to identify atmospheric pollutants that continue to generate ongoing research interests (due to their impacts on climate, pollution, or human health) and are typically difficult to measure by the HR-AMS. Additionally, included in this dissertation are four examples of science/engineering related inquiry-based lessons that were developed to relate well with my own Master's research field and implemented into three high school science and math classrooms over the course of a two year NSF STEM Fellowship. Lastly, a two-year long case study following qualitative and quantitative data from 296 students one of these activities provides examples of the positive impact by these types of developed activities.

Book Air Quality in the Mexico Megacity

Download or read book Air Quality in the Mexico Megacity written by L. Molina and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, experts in atmospheric sciences, human health, economics, social and political sciences contribute to an integrated assessment of the complex elements needed to structure air quality policy in the 21st century. The analysis is developed through a case study of the Mexico City Metropolitan Area - one of the world's largest megacities in which air pollution grew unchecked for decades. The international research team is led by Luisa T. and Mario J. Molina, Nobel Laureate in Chemistry. Improvements in Mexico City's air quality in the last decade testifies to the power of determined and enlightened policy making, and throws into relief the tough problems that remain to be solved. The volume's first six chapters, including the contributions of over 50 distinguished scholars from Mexico and the US, outline the fundamental areas of knowledge policy makers must accommodate. The message is that only good science and well-chosen technologies can direct the way to corrective regulatory measures; but without strong commitment from government, no amount of science or technology can help.