Download or read book Introduction to Spatial Mapping of Biomolecules by Imaging Mass Spectrometry written by Bindesh Shrestha and published by Elsevier. This book was released on 2021-04-23 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Imaging mass spectrometry (MS) techniques are often utilized without an understanding of their underlying principles, making it difficult for scientists to determine when and how they can exploit MS to visualize their biomolecules of interest. Introduction to Spatial Mapping of Biomolecules by Imaging Mass Spectrometry is an essential reference to help scientists determine the status and strategies of biomolecule analysis, describing its many applications for diverse classes of biomolecules. The book builds a foundation of imaging MS knowledge by introducing ionization sources, sample preparation, visualization guidelines, molecule identification, quantification, data analysis, etc. The second section contains chapters focused on case studies on analyzing a biomolecule class of molecules. Case studies include an introduction/background, and a summary of successful imaging MS studies with illustrative figures and future directions. - Provides the introductory foundations of imaging mass spectrometry for those new to the technique - Organized by topic to facilitate a quick deep dive, allowing researchers to immediately apply the imaging MS techniques to their work - Includes case studies summarizing the imaging MS techniques developed for the class of molecules
Download or read book High Throughput Mass Spectrometry in Drug Discovery written by Chang Liu and published by John Wiley & Sons. This book was released on 2023-08-15 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Apply mass spectrometry to every phase of new drug discovery with this cutting-edge guide Mass spectrometry is a technique that identifies and characterizes compounds based on their mass – the fundamental molecular characteristic. It has become an invaluable analytical tool in various disciplines, industries, and research fields. It has become particularly central to new drug discovery and development, which broadly deploys mass spectrometry at every phase. The pharmaceutical industry has become one of the main drivers of technological development in mass spectrometry. High Throughput Mass Spectrometry in Drug Discovery offers a comprehensive introduction to mass spectrometry and its applications in pharmaceutical development. It covers the foundational principles and science of mass spectrometry before moving to specific experimental methods and their applications at various stages of drug discovery. Its thorough treatment and detailed guidance make it an invaluable tool for pharmaceutical research and development. High Throughput Mass Spectrometry in Drug Discovery readers will also find: Detailed analysis of techniques, including label-free screening, synthetic reaction optimization, and more An authorial team with extensive combined experience in research and industrial applications Technical strategies with the potential to accelerate quantitative bioanalysis in drug discovery High Throughput Mass Spectrometry in Drug Discovery is essential for analytical, bioanalytical, and medicinal chemists working in the pharmaceutical industry and for any researchers and graduate students interested in drug discovery and development.
Download or read book Single Cell Metabolism written by Bindesh Shrestha and published by Humana. This book was released on 2019-09-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume explores the latest techniques and workflow for the analysis of single cells metabolism. The chapters in this book cover topics such as the development of mass spectrometry-based single cell approaches, Pico-ESI-MS for single-cell metabolomics analysis; laser capture microdissection; ambient single cell metabolite profile (DESI and LAESI); and MALDI-MS methodology, quantum dots for quantitative cytology to study metabolic heterogeneity of single cells. Written in the highly successful Methods in Molecular Biology series format, the chapters consist of introductions to the topic, lists of the necessary materials and reagents, step-by-step guidelines, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and authoritative, Single Cell Metabolism: Methods and Protocols is a valuable resource for any researcher and scientist interested in learning more about this field.
Download or read book Advances in MALDI and Laser Induced Soft Ionization Mass Spectrometry written by Rainer Cramer and published by Springer. This book was released on 2015-11-09 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the state-of-the-art of modern MALDI (matrix-assisted laser desorption/ionization) and its applications. New applications and improvements in the MALDI field such as biotyping, clinical diagnosis, forensic imaging, and ESI-like ion production are covered in detail. Additional topics include MS imaging, biotyping/speciation and large-scale, high-speed MS sample profiling, new methods based on MALDI or MALDI-like sample preparations, and the advantages of ESI to MALDI MS analysis. This is an ideal book for graduate students and researchers in the field of bioanalytical sciences. This book also: • Showcases new techniques and applications in MALDI MS • Demonstrates how MALDI is preferable to ESI (electrospray ionization) • Illustrates the pros and cons associated with biomarker discovery studies in clinical proteomics and the various application areas, such as cancer proteomics
Download or read book Methodologies for Metabolomics written by Norbert W. Lutz and published by Cambridge University Press. This book was released on 2013-01-21 with total page 641 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metabolomics, the global characterisation of the small molecule complement involved in metabolism, has evolved into a powerful suite of approaches for understanding the global physiological and pathological processes occurring in biological organisms. The diversity of metabolites, the wide range of metabolic pathways and their divergent biological contexts require a range of methodological strategies and techniques. Methodologies for Metabolomics provides a comprehensive description of the newest methodological approaches in metabolomic research. The most important technologies used to identify and quantify metabolites, including nuclear magnetic resonance and mass spectrometry, are highlighted. The integration of these techniques with classical biological methods is also addressed. Furthermore, the book presents statistical and chemometric methods for evaluation of the resultant data. The broad spectrum of topics includes a vast variety of organisms, samples and diseases, ranging from in vivo metabolomics in humans and animals to in vitro analysis of tissue samples, cultured cells and biofluids.
Download or read book MALDI Mass Spectrometry Imaging written by Tiffany Siegel Porta and published by Royal Society of Chemistry. This book was released on 2021-12-03 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers knowledge about matrix-assisted laser desorption ionisation (MALDI) mass spectrometry imaging for postgraduate and professional researchers in academia and in industry where it has direct application to clinical research.
Download or read book Fingermark Visualisation Manual written by Stationery Office (Great Britain) and published by . This book was released on 2014-04-14 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Practical Guide to ICP MS written by Robert Thomas and published by CRC Press. This book was released on 2003-12-11 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a field insider with more than 20 years of experience in the development and application of atomic spectroscopy instrumentation, the Practical Guide to ICP-MS offers key concepts and guidelines in a reader-friendly format that is superb for those with limited knowledge of the technique. This reference discusses the fundamental principles, analytical advantages, practical capabilities, and overall benefits of ICP-MS. It presents the most important selection criteria when evaluating commercial ICP-MS equipment and the most common application areas of ICP-MS such as the environmental, semiconductor, geochemical, clinical, nuclear, food, metallurgical, and petrochemical industries.
Download or read book Single Cell Protein Analysis written by Anup K. Singh and published by Humana. This book was released on 2015-11-07 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume highlights recent developments in flow cytometry, affinity assays, imaging, mass spectrometry, microfluidics and other technologies that enable analysis of proteins at the single cell level. The book also includes chapters covering a suite of biochemical and biophysical methods capable of making an entire gamut of proteomic measurements, including analysis of protein abundance or expression, protein interaction networks, post-translational modifications, translocation and enzymatic activity. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Authoritative and thorough, Single Cell Protein Analysis: Methods and Protocols is useful to researchers and students in biological and biomedical sciences who have an interest in proteomic measurements in cells.
Download or read book Electrospun Nanofibers written by Mehdi Afshari and published by Woodhead Publishing. This book was released on 2016-09-13 with total page 650 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrospun Nanofibers covers advances in the electrospinning process including characterization, testing and modeling of electrospun nanofibers, and electrospinning for particular fiber types and applications. Electrospun Nanofibers offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science. Electrospinning is the most commercially successful process for the production of nanofibers and rising demand is driving research and development in this field. Rapid progress is being made both in terms of the electrospinning process and in the production of nanofibers with superior chemical and physical properties. Electrospinning is becoming more efficient and more specialized in order to produce particular fiber types such as bicomponent and composite fibers, patterned and 3D nanofibers, carbon nanofibers and nanotubes, and nanofibers derived from chitosan. - Provides systematic and comprehensive coverage of the manufacture, properties, and applications of nanofibers - Covers recent developments in nanofibers materials including electrospinning of bicomponent, chitosan, carbon, and conductive fibers - Brings together expertise from academia and industry to provide comprehensive, up-to-date information on nanofiber research and development - Offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science
Download or read book Nanostructure Science and Technology written by Richard W. Siegel and published by Springer Science & Business Media. This book was released on 1999-09-30 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Timely information on scientific and engineering developments occurring in laboratories around the world provides critical input to maintaining the economic and technological strength of the United States. Moreover, sharing this information quickly with other countries can greatly enhance the productivity of scientists and engineers. These are some of the reasons why the National Science Foundation (NSF) has been involved in funding science and technology assessments comparing the United States and foreign countries since the early 1980s. A substantial number of these studies have been conducted by the World Technology Evaluation Center (WTEC) managed by Loyola College through a cooperative agreement with NSF. The National Science and Technology Council (NSTC), Committee on Technology's Interagency Working Group on NanoScience, Engineering and Technology (CT/IWGN) worked with WTEC to develop the scope of this Nanostucture Science and Technology report in an effort to develop a baseline of understanding for how to strategically make Federal nanoscale R&D investments in the coming years. The purpose of the NSTC/WTEC activity is to assess R&D efforts in other countries in specific areas of technology, to compare these efforts and their results to U. S. research in the same areas, and to identify opportunities for international collaboration in precompetitive research. Many U. S. organizations support substantial data gathering and analysis efforts focusing on nations such as Japan. But often the results of these studies are not widely available. At the same time, government and privately sponsored studies that are in the public domain tend to be "input" studies.
Download or read book Metal Nanoparticles in Microbiology written by Mahendra Rai and published by Springer Science & Business Media. This book was released on 2011-04-02 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following an introduction to biogenic metal nanoparticles, this book presents how they can be biosynthesized using bacteria, fungi and yeast, as well as their potential applications in biomedicine. It is shown that the synthesis of nanoparticles using microbes is eco-friendly and results in reproducible metal nanoparticles of well-defined sizes, shapes and structures. This biotechnological approach based on the process of biomineralization exploits the effectiveness and flexibility of biological systems. Chapters include practical protocols for microbial synthesis of nanoparticles and microbial screening methods for isolating a specific nanoparticle producer as well as reviews on process optimization, industrial scale production, biomolecule-nanoparticle interactions, magnetosomes, silver nanoparticles and their numerous applications in medicine, and the application of gold nanoparticles in developing sensitive biosensors.
Download or read book Differential Ion Mobility Spectrometry written by Alexandre A. Shvartsburg and published by CRC Press. This book was released on 2008-12-24 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last decade, scientific and engineering interests have been shifting from conventional ion mobility spectrometry (IMS) to field asymmetric waveform ion mobility spectrometry (FAIMS). Differential Ion Mobility Spectrometry: Nonlinear Ion Transport and Fundamentals of FAIMS explores this new analytical technology that separates and characterizes ions by the difference between their mobility in gases at high and low electric fields. It also covers the novel topics of higher-order differential IMS and IMS with alignment of dipole direction. The book relates the fundamentals of FAIMS and other nonlinear IMS methods to the physics of gas-phase ion transport. It begins with the basics of ion diffusion and mobility in gases, covering the main attributes of conventional IMS that are relevant to all IMS approaches. Building on this foundation, the author reviews diverse high-field transport phenomena that underlie differential IMS. He discusses the conceptual implementation and first-principles optimization of FAIMS as a filtering technique, emphasizing the dependence of FAIMS performance metrics on instrumental parameters and properties of ion species. He also explores ion reactions in FAIMS caused by field heating and the effects of inhomogeneous electric field in curved FAIMS gaps. Written by an accomplished scientist in the field, this state-of-the-art book supplies the foundation to understand the new technology of nonlinear IMS methods.
Download or read book Carbon Based Material for Environmental Protection and Remediation written by Mattia Bartoli and published by BoD – Books on Demand. This book was released on 2020-08-19 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon-Based Material for Environmental Protection and Remediation presents an overview of carbon-based technologies and processes, and examines their usefulness and efficiency for environmental preservation and remediation. Chapters cover topics ranging from pollutants removal to new processes in materials science. Written for interested readers with strong scientific and technological backgrounds, this book will appeal to scientific advisors at private companies, academics, and graduate students.
Download or read book Mass Spectrometry of Polymers written by Giorgio Montaudo and published by CRC Press. This book was released on 2001-10-29 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mass Spectrometry (MS) has rapidly become an indispensable tool in polymer analysis, and modern MS today complements in many ways the structural data provided by Nuclear Magnetic Resonance (NMR) and Infrared (IR) methods. Recent advances have sparked a growing interest in this field and established a need for a summary of progress made and results
Download or read book Chemical Micro Process Engineering written by Volker Hessel and published by John Wiley & Sons. This book was released on 2006-03-06 with total page 681 pages. Available in PDF, EPUB and Kindle. Book excerpt: Micro process engineering is approaching both academia and industry. With the provision of micro devices, systems and whole plants by commercial suppliers, one main barrier for using these units has been eliminated. This book focuses on processes and their plants rather than on devices: what is 'before', 'behind' and 'around' micro device fabrication - and gives a comprehensive and detailed overview on the micro-reactor plants and three topic-class applications which are mixing, fuel processing, and catalyst screening. Thus, the book reflects the current level of development from 'micro-reactor design' to 'micro-reactor process design'.
Download or read book Introduction to Single Cell Omics written by Xinghua Pan and published by Frontiers Media SA. This book was released on 2019-09-19 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: Single-cell omics is a progressing frontier that stems from the sequencing of the human genome and the development of omics technologies, particularly genomics, transcriptomics, epigenomics and proteomics, but the sensitivity is now improved to single-cell level. The new generation of methodologies, especially the next generation sequencing (NGS) technology, plays a leading role in genomics related fields; however, the conventional techniques of omics require number of cells to be large, usually on the order of millions of cells, which is hardly accessible in some cases. More importantly, harnessing the power of omics technologies and applying those at the single-cell level are crucial since every cell is specific and unique, and almost every cell population in every systems, derived in either vivo or in vitro, is heterogeneous. Deciphering the heterogeneity of the cell population hence becomes critical for recognizing the mechanism and significance of the system. However, without an extensive examination of individual cells, a massive analysis of cell population would only give an average output of the cells, but neglect the differences among cells. Single-cell omics seeks to study a number of individual cells in parallel for their different dimensions of molecular profile on genome-wide scale, providing unprecedented resolution for the interpretation of both the structure and function of an organ, tissue or other system, as well as the interaction (and communication) and dynamics of single cells or subpopulations of cells and their lineages. Importantly single-cell omics enables the identification of a minor subpopulation of cells that may play a critical role in biological process over a dominant subpolulation such as a cancer and a developing organ. It provides an ultra-sensitive tool for us to clarify specific molecular mechanisms and pathways and reveal the nature of cell heterogeneity. Besides, it also empowers the clinical investigation of patients when facing a very low quantity of cell available for analysis, such as noninvasive cancer screening with circulating tumor cells (CTC), noninvasive prenatal diagnostics (NIPD) and preimplantation genetic test (PGT) for in vitro fertilization. Single-cell omics greatly promotes the understanding of life at a more fundamental level, bring vast applications in medicine. Accordingly, single-cell omics is also called as single-cell analysis or single-cell biology. Within only a couple of years, single-cell omics, especially transcriptomic sequencing (scRNA-seq), whole genome and exome sequencing (scWGS, scWES), has become robust and broadly accessible. Besides the existing technologies, recently, multiplexing barcode design and combinatorial indexing technology, in combination with microfluidic platform exampled by Drop-seq, or even being independent of microfluidic platform but using a regular PCR-plate, enable us a greater capacity of single cell analysis, switching from one single cell to thousands of single cells in a single test. The unique molecular identifiers (UMIs) allow the amplification bias among the original molecules to be corrected faithfully, resulting in a reliable quantitative measurement of omics in single cells. Of late, a variety of single-cell epigenomics analyses are becoming sophisticated, particularly single cell chromatin accessibility (scATAC-seq) and CpG methylation profiling (scBS-seq, scRRBS-seq). High resolution single molecular Fluorescence in situ hybridization (smFISH) and its revolutionary versions (ex. seqFISH, MERFISH, and so on), in addition to the spatial transcriptome sequencing, make the native relationship of the individual cells of a tissue to be in 3D or 4D format visually and quantitatively clarified. On the other hand, CRISPR/cas9 editing-based In vivo lineage tracing methods enable dynamic profile of a whole developmental process to be accurately displayed. Multi-omics analysis facilitates the study of multi-dimensional regulation and relationship of different elements of the central dogma in a single cell, as well as permitting a clear dissection of the complicated omics heterogeneity of a system. Last but not the least, the technology, biological noise, sequence dropout, and batch effect bring a huge challenge to the bioinformatics of single cell omics. While significant progress in the data analysis has been made since then, revolutionary theory and algorithm logics for single cell omics are expected. Indeed, single-cell analysis exert considerable impacts on the fields of biological studies, particularly cancers, neuron and neural system, stem cells, embryo development and immune system; other than that, it also tremendously motivates pharmaceutic RD, clinical diagnosis and monitoring, as well as precision medicine. This book hereby summarizes the recent developments and general considerations of single-cell analysis, with a detailed presentation on selected technologies and applications. Starting with the experimental design on single-cell omics, the book then emphasizes the consideration on heterogeneity of cancer and other systems. It also gives an introduction of the basic methods and key facts for bioinformatics analysis. Secondary, this book provides a summary of two types of popular technologies, the fundamental tools on single-cell isolation, and the developments of single cell multi-omics, followed by descriptions of FISH technologies, though other popular technologies are not covered here due to the fact that they are intensively described here and there recently. Finally, the book illustrates an elastomer-based integrated fluidic circuit that allows a connection between single cell functional studies combining stimulation, response, imaging and measurement, and corresponding single cell sequencing. This is a model system for single cell functional genomics. In addition, it reports a pipeline for single-cell proteomics with an analysis of the early development of Xenopus embryo, a single-cell qRT-PCR application that defined the subpopulations related to cell cycling, and a new method for synergistic assembly of single cell genome with sequencing of amplification product by phi29 DNA polymerase. Due to the tremendous progresses of single-cell omics in recent years, the topics covered here are incomplete, but each individual topic is excellently addressed, significantly interesting and beneficial to scientists working in or affiliated with this field.