EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Characterization  integration and reliability of HfO2 and LaLuO3 high    metal gate stacks for CMOS applications

Download or read book Characterization integration and reliability of HfO2 and LaLuO3 high metal gate stacks for CMOS applications written by Alexander Nichau and published by Forschungszentrum Jülich. This book was released on 2014-04-03 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Characterization  Integration and Reliability of HfO 1tn2 and LaLuO 1tn3 High  k63 metal  high kappa metal  Gate Stacks for CMOS Applications

Download or read book Characterization Integration and Reliability of HfO 1tn2 and LaLuO 1tn3 High k63 metal high kappa metal Gate Stacks for CMOS Applications written by Alexander Nichau and published by . This book was released on 2013 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Resistive switching in ZrO2 based metal oxide metal structures

Download or read book Resistive switching in ZrO2 based metal oxide metal structures written by Irina Kärkkänen and published by Forschungszentrum Jülich. This book was released on 2014 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Oxygen transport in thin oxide films at high field strength

Download or read book Oxygen transport in thin oxide films at high field strength written by Dieter Weber and published by Forschungszentrum Jülich. This book was released on 2014 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ionic transport in nanostructures at high eld strength has recently gained attention, because novel types of computer memory with potentially superior properties rely on such phenomena. The applied voltages are only moderate, but they drop over the distance of a few nanometers and lead to extreme eld strengths in the MV/cm region. Such strong elds contributes signi cantly to the activation energy for ionic jump processes. This leads to an exponential increase of transport speed with voltage. Conventional high-temperature ionic conduction, in contrast, only relies on thermal activation for such jumps. In this thesis, the transport of minute amounts of oxygen through a thin dielectric layer sandwiched between two thin conducting oxide electrodes was detected semiquantitatively by measuring the conductance change of the electrodes after applying a current through the dielectric layer. The relative conductance change G=G as a function of current I and duration t follows over several orders of magnitude a simple, empirical law of the form G=G = CIAtB with t parameters C, A and B; A;B 2 [0; 1]. This empirical law can be linked to a predicted exponential increase of the transport speed with voltage at high eld strength. The behavior in the time domain can be explained with a spectrum of relaxation processes, similar to the relaxation of dielectrics. The in uence of temperature on the transport is strong, but still much lower than expected. This contradicts a commonly used law for high- eld ionic transport. The di erent oxide layers are epitaxial with thicknesses between 5 and 70 nm. First large-scale test samples were fabricated using shadow masks. The general behavior of such devices was studied extensively. In an attempt to achieve quantitative results with defect-free, miniaturized devices, a lithographic manufacturing process that uses repeated steps of epitaxial deposition and structuring of the layers was developed. It employs newly developed and optimized wet chemical etching processes for the conducting electrodes. First high-quality devices could be manufactured with this process and con rmed that such devices su er less from parasitic e ects. The lithographically structured samples were made from di erent materials. The results from the rst test samples and the lithographically structured samples are therefore not directly comparable. They do exhibit however in principle the same behavior. Further investigation of such lithographically structured samples appears promising

Book Micro spectroscopic investigation of valence change processes in resistive switching SrTiO3 thin films

Download or read book Micro spectroscopic investigation of valence change processes in resistive switching SrTiO3 thin films written by Annemarie Köhl and published by Forschungszentrum Jülich. This book was released on 2014 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The role of defects at functional interfaces between polar and non polar perovskite oxides

Download or read book The role of defects at functional interfaces between polar and non polar perovskite oxides written by Felix Gunkel and published by Forschungszentrum Jülich. This book was released on 2013 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book 50 Years Of Materials Science In Singapore

Download or read book 50 Years Of Materials Science In Singapore written by Freddy Yin Chiang Boey and published by World Scientific. This book was released on 2016-06-17 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: 50 Years of Materials Science in Singapore describes in vivid detail how a newly independent nation like Singapore developed world-class research capabilities in materials science that helped the country make rapid progress in energy, biomedical and electronics sectors. The economy mirrored this rapid trail of progress, utilizing home-grown technology and the contribution of materials science to the various sectors is undeniable in ensuring the economic growth and stability of Singapore.

Book Manufacturable Process Tool for High k Metal Gate

Download or read book Manufacturable Process Tool for High k Metal Gate written by Aarthi Venkateshan and published by VDM Publishing. This book was released on 2008-11-01 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Off state leakage current related power dominates the CMOS heat dissipation problem of state of the art silicon integrated circuits. In this study, this issue has been addressed in terms of a low-cost single wafer processing (SWP) technique using a single tool for the fabrication of high- dielectric gate stacks for sub-45 nm CMOS. A system for monolayer photoassisted deposition was modified to deposit high-quality HfO2 films with in-situ clean, in-situ oxide film deposition, and in-situ anneal capability. The system was automated with Labview 8.2 for gas/precursor delivery, substrate temperature and UV lamp. The gold-hafnium oxide-aluminum (Au-HfO2-Al) stacks processed in this system had superior quality oxide characteristics with gate leakage current density on the order of 1 x 10-12 A/cm2 @ 1V and maximum capacitance on the order of 75 nF for EOT=0.39 nm. Achieving low leakage current density along with high capacitance demonstrated the excellent performance of the process developed. Detailed study of the deposition characteristics such as linearity, saturation behavior, film thickness and temperature dependence was performed for tight control on process parameters. Using Box-Behnken design of experiments, process optimization was performed for an optimal recipe for HfO2 films. UV treatment with in-situ processing of metal/high- dielectric stacks was studied to provide reduced variation in gate leakage current and capacitance. High-resolution transmission electron microscopy (TEM) was performed to calculate the equivalent oxide thickness (EOT) and dielectric constant of the films. Overall, this study shows that the in-situ fabrication of MIS gate stacks allows for lower processingcosts, high throughput, and superior device performance.

Book Atomic Layer Deposition for Semiconductors

Download or read book Atomic Layer Deposition for Semiconductors written by Cheol Seong Hwang and published by Springer Science & Business Media. This book was released on 2013-10-18 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.

Book Carrier mobility in advanced channel materials using alternative gate dielectrics

Download or read book Carrier mobility in advanced channel materials using alternative gate dielectrics written by Eylem Durgun Özben and published by Forschungszentrum Jülich. This book was released on 2014-03-20 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Permittivity Gate Dielectric Materials

Download or read book High Permittivity Gate Dielectric Materials written by Samares Kar and published by Springer Science & Business Media. This book was released on 2013-06-25 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The book comprehensively covers all the current and the emerging areas of the physics and the technology of high permittivity gate dielectric materials, including, topics such as MOSFET basics and characteristics, hafnium-based gate dielectric materials, Hf-based gate dielectric processing, metal gate electrodes, flat-band and threshold voltage tuning, channel mobility, high-k gate stack degradation and reliability, lanthanide-based high-k gate stack materials, ternary hafnia and lanthania based high-k gate stack films, crystalline high-k oxides, high mobility substrates, and parameter extraction. Each chapter begins with the basics necessary for understanding the topic, followed by a comprehensive review of the literature, and ultimately graduating to the current status of the technology and our scientific understanding and the future prospects." .

Book Oxide Electronics

Download or read book Oxide Electronics written by Asim K. Ray and published by John Wiley & Sons. This book was released on 2021-04-12 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oxide Electronics Multiple disciplines converge in this insightful exploration of complex metal oxides and their functions and properties Oxide Electronics delivers a broad and comprehensive exploration of complex metal oxides designed to meet the multidisciplinary needs of electrical and electronic engineers, physicists, and material scientists. The distinguished author eschews complex mathematics whenever possible and focuses on the physical and functional properties of metal oxides in each chapter. Each of the sixteen chapters featured within the book begins with an abstract and an introduction to the topic, clear explanations are presented with graphical illustrations and relevant equations throughout the book. Numerous supporting references are included, and each chapter is self-contained, making them perfect for use both as a reference and as study material. Readers will learn how and why the field of oxide electronics is a key area of research and exploitation in materials science, electrical engineering, and semiconductor physics. The book encompasses every application area where the functional and electronic properties of various genres of oxides are exploited. Readers will also learn from topics like: Thorough discussions of High-k gate oxide for silicon heterostructure MOSFET devices and semiconductor-dielectric interfaces An exploration of printable high-mobility transparent amorphous oxide semiconductors Treatments of graphene oxide electronics, magnetic oxides, ferroelectric oxides, and materials for spin electronics Examinations of the calcium aluminate binary compound, perovoksites for photovoltaics, and oxide 2Degs Analyses of various applications for oxide electronics, including data storage, microprocessors, biomedical devices, LCDs, photovoltaic cells, TFTs, and sensors Suitable for researchers in semiconductor technology or working in materials science, electrical engineering, and physics, Oxide Electronics will also earn a place in the libraries of private industry researchers like device engineers working on electronic applications of oxide electronics. Engineers working on photovoltaics, sensors, or consumer electronics will also benefit from this book.

Book High k Gate Dielectric Materials

Download or read book High k Gate Dielectric Materials written by Niladri Pratap Maity and published by CRC Press. This book was released on 2020-12-18 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume explores and addresses the challenges of high-k gate dielectric materials, one of the major concerns in the evolving semiconductor industry and the International Technology Roadmap for Semiconductors (ITRS). The application of high-k gate dielectric materials is a promising strategy that allows further miniaturization of microelectronic components. This book presents a broad review of SiO2 materials, including a brief historical note of Moore’s law, followed by reliability issues of the SiO2 based MOS transistor. It goes on to discuss the transition of gate dielectrics with an EOT ~ 1 nm and a selection of high-k materials. A review of the various deposition techniques of different high-k films is also discussed. High-k dielectrics theories (quantum tunneling effects and interface engineering theory) and applications of different novel MOSFET structures, like tunneling FET, are also covered in this book. The volume also looks at the important issues in the future of CMOS technology and presents an analysis of interface charge densities with the high-k material tantalum pentoxide. The issue of CMOS VLSI technology with the high-k gate dielectric materials is covered as is the advanced MOSFET structure, with its working structure and modeling. This timely volume will prove to be a valuable resource on both the fundamentals and the successful integration of high-k dielectric materials in future IC technology.

Book Internal Photoemission Spectroscopy

Download or read book Internal Photoemission Spectroscopy written by Valeri V. Afanas'ev and published by Elsevier. This book was released on 2014-02-22 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of Internal Photoemission Spectroscopy thoroughly updates this vital, practical guide to internal photoemission (IPE) phenomena and measurements. The book's discussion of fundamental physical and technical aspects of IPE spectroscopic applications is supplemented by an extended overview of recent experimental results in swiftly advancing research fields. These include the development of insulating materials for advanced SiMOS technology, metal gate materials, development of heterostructures based on high-mobility semiconductors, and more. Recent results concerning the band structure of important interfaces in novel materials are covered as well. Internal photoemission involves the physics of charge carrier photoemission from one solid to another, and different spectroscopic applications of this phenomenon to solid state heterojunctions. This technique complements conventional external photoemission spectroscopy by analyzing interfaces separated from the sample surface by a layer of a different solid or liquid. Internal photoemission provides the most straightforward, reliable information regarding the energy spectrum of electron states at interfaces. At the same time, the method enables the analysis of heterostructures relevant to modern micro- and nano-electronic devices as well as new materials involved in their design and fabrication. - First complete model description of the internal photoemission phenomena - Overview of the most reliable energy barrier determination procedures and trap characterization methods - Overview of the most recent results on band structure of high-permittivity insulating materials and their interfaces with semiconductors and metals

Book Multifunctional Oxide Heterostructures

Download or read book Multifunctional Oxide Heterostructures written by Evgeny Y. Tsymbal and published by OUP Oxford. This book was released on 2012-08-30 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the rapidly developing field of oxide thin-films and heterostructures. Oxide materials combined with atomic-scale precision in a heterostructure exhibit an abundance of macroscopic physical properties involving the strong coupling between the electronic, spin, and structural degrees of freedom, and the interplay between magnetism, ferroelectricity, and conductivity. Recent advances in thin-film deposition and characterization techniques made possible the experimental realization of such oxide heterostructures, promising novel functionalities and device concepts. The book consists of chapters on some of the key innovations in the field over recent years, including strongly correlated oxide heterostructures, magnetoelectric coupling and multiferroic materials, thermoelectric phenomena, and two-dimensional electron gases at oxide interfaces. The book covers the core principles, describes experimental approaches to fabricate and characterize oxide heterostructures, demonstrates new functional properties of these materials, and provides an overview of novel applications.