EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Characterization and Optimization of Novel Nanostructured Metallic Substrates for Surface Enhanced Raman Spectroscopy

Download or read book Characterization and Optimization of Novel Nanostructured Metallic Substrates for Surface Enhanced Raman Spectroscopy written by and published by . This book was released on 2001 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surface enhanced Raman spectroscopy (SERS) is a highly sensitive technique for quantifying trace amounts of analyte adsorbed at a roughened metal surface. We have shown that novel gold nanostructured films, simply fabricated using gold nanoparticles and latex microspheres, can be used as highly sensitive SERS substrates. The films are templated by layers of colloidal crystals and display long ranged ordered regions, and porosity on two length scales that results in high surface area. By integrating these substrates into a flow chamber we have obtained consistent reproducible data and demonstrated the quantitative detection of sodium cyanide in the concentration range from 5 to 500 ppb, with detection significantly enhanced by lowering the pH after cyanide adsorption. We have found that the optimum size of the latex microspheres is approximately equal to the wavelength of the laser. Finally, the SERS activity of the gold substrates coated with silver nanoparticles was investigated using methyl phosphonic acid (MPA). Detection of MPA was dependent on the time between substrate coating and the SERS measurement. These studies show that novel materials formed by simple wet chemistry techniques can be used efficiently in practical devices for the detection of chemical agents.

Book Raman Spectroscopy for Nanomaterials Characterization

Download or read book Raman Spectroscopy for Nanomaterials Characterization written by Challa S.S.R. Kumar and published by Springer Science & Business Media. This book was released on 2012-03-30 with total page 659 pages. Available in PDF, EPUB and Kindle. Book excerpt: First volume of a 40-volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Raman spectroscopy for the characterization of nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume essential reading for research scientists in academia and industry.

Book Surface Enhanced Raman Spectroscopy for Biophysical Applications

Download or read book Surface Enhanced Raman Spectroscopy for Biophysical Applications written by Claudia Fasolato and published by Springer. This book was released on 2018-12-05 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book explores the phenomenon of surface-enhanced Raman scattering (SERS), the huge amplification of Raman signal from molecules in the proximity of a metallic nanostructured surface, allowing readers to gain an in-depth understanding of the mechanisms affecting the spectroscopic response of SERS-active systems for effective applications. SERS spectroscopy is an ultrasensitive analytical technique with great potential for applications in the field of biophysics and nanomedicine. As examples, the author presents the design of nanocolloid-based SERS-active substrates for molecular sensing and of a folate-based SERS-active nanosensor capable of selectively interacting with cancer cells, enabling cancer diagnostics and therapy at the single-cell level. The author also suggests novel paths for the systematization of the SERS nanosystem design and experimental protocols to maximize sensitivity and reproducibility, which is essential when real-world biomedical applications are the goal of the study. With a combined approach, both fundamental and applied, and a detailed analysis of the state of the art, this book provides a valuable overview both for students new to SERS spectroscopy and for experts in the field.

Book Optimization and Characterization of Self assembled Monolayer Multilayer Surface enhanced Raman Scattering Substrate for Immuno nanosensors

Download or read book Optimization and Characterization of Self assembled Monolayer Multilayer Surface enhanced Raman Scattering Substrate for Immuno nanosensors written by Charles Kofi Klutse and published by . This book was released on 2012 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surface-enhanced Raman scattering (SERS) is a powerful analytical tool and the recent expansion of substrates for SERS measurement broadens its field of applications, including SERS-based immuno-nanosensing. This dissertation describes the optimization and characterization of self-assembled monolayer (SAM) multilayer SERS substrates for improving performance of different types of substrates. SERS substrates derived from metal film on nanostructures were modified with multiple metal films interspaced with SAM dielectric spacers to achieve multilayered SERS substrates. The fundamental concept of this substrate geometry exploited the cumulative effect of the multiple electromagnetic fields and various properties of SAMs to optimize SERS enhancement of multilayer SERS substrates to about 20-fold compared to conventional substrates.

Book Surface Enhanced Vibrational Spectroscopy

Download or read book Surface Enhanced Vibrational Spectroscopy written by Ricardo Aroca and published by John Wiley & Sons. This book was released on 2006-05-01 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surface Enhanced Vibrational Spectroscopy (SEVS) has reached maturity as an analytical technique, but until now there has been no single work that describes the theory and experiments of SEVS. This book combines the two important techniques of surface-enhanced Raman scattering (SERS) and surface-enhanced infrared (SEIR) into one text that serves as the definitive resource on SEVS. Discusses both the theory and the applications of SEVS and provides an up-to-date study of the state of the art Offers interpretations of SEVS spectra for practicing analysts Discusses interpretation of SEVS spectra, which can often be very different to the non-enhanced spectrum - aids the practicing analyst

Book Frontiers of Surface Enhanced Raman Scattering

Download or read book Frontiers of Surface Enhanced Raman Scattering written by Yukihiro Ozaki and published by John Wiley & Sons. This book was released on 2014-02-19 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive presentation of Surface-Enhanced Raman Scattering (SERS) theory, substrate fabrication, applications of SERS to biosystems, chemical analysis, sensing and fundamental innovation through experimentation. Written by internationally recognized editors and contributors. Relevant to all those within the scientific community dealing with Raman Spectroscopy, i.e. physicists, chemists, biologists, material scientists, physicians and biomedical scientists. SERS applications are widely expanding and the technology is now used in the field of nanotechnologies, applications to biosystems, nonosensors, nanoimaging and nanoscience.

Book Nanocharacterization Techniques

Download or read book Nanocharacterization Techniques written by Osvaldo de Oliveira Jr and published by William Andrew. This book was released on 2017-03-18 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanocharacterization Techniques covers the main characterization techniques used in nanomaterials and nanostructures. The chapters focus on the fundamental aspects of characterization techniques and their distinctive approaches. Significant advances that have taken place over recent years in refining techniques are covered, and the mathematical foundations needed to use the techniques are also explained in detail. This book is an important reference for materials scientists and engineers looking for a through analysis of nanocharacterization techniques in order to establish which is best for their needs. Includes a detailed analysis of different nanocharacterization techniques, allowing readers to explore which one is best for their particular needs Provides examples of how each characterization technique has been used, giving readers a greater understanding of how each technique can be profitably used Covers the mathematical background needed to utilize each of these techniques to their best effect, meaning that readers can gain a full understanding of the theoretical principles behind each technique covered Serves as an important, go-to reference for materials scientists and engineers

Book Characterization of Nanomaterials

Download or read book Characterization of Nanomaterials written by Sneha Bhagyaraj and published by Woodhead Publishing. This book was released on 2018-06-18 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Characterization of Nanomaterials: Advances and Key Technologies discusses the latest advancements in the synthesis of various types of nanomaterials. The book's main objective is to provide a comprehensive review regarding the latest advances in synthesis protocols that includes up-to-date data records on the synthesis of all kinds of inorganic nanostructures using various physical and chemical methods. The synthesis of all important nanomaterials, such as carbon nanostructures, Core-shell Quantum dots, Metal and metal oxide nanostructures, Nanoferrites, polymer nanostructures, nanofibers, and smart nanomaterials are discussed, making this a one-stop reference resource on research accomplishments in this area. Leading researchers from industry, academia, government and private research institutions across the globe have contributed to the book. Academics, researchers, scientists, engineers and students working in the field of polymer nanocomposites will benefit from its solutions for material problems. Provides an up-to-date data record on the synthesis of all kinds of organic and inorganic nanostructures using various physical and chemical methods Presents the latest advances in synthesis protocols Presents latest techniques used in the physical and chemical characterization of nanomaterials Covers characterization of all the important materials groups such as: carbon nanostructures, core-shell quantumdots, metal and metal oxide nanostructures, nanoferrites, polymer nanostructures and nanofibers A broad range of applications is covered including the performance of batteries, solar cells, water filtration, catalysts, electronics, drug delivery, tissue engineering, food packaging, sensors and fuel cells Leading researchers from industry, academia, government and private research institutes have contributed to the books

Book Plasmonic Metal Nanostructures

Download or read book Plasmonic Metal Nanostructures written by Caixia Kan and published by John Wiley & Sons. This book was released on 2024-02-13 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Firsthand insights on a unique class of optoelectronic materials, covering technologies and applications in catalysis, sensing, and spectroscopy Plasmonic Metal Nanostructures provides broad coverage of the field of plasmonic technologies, from fundamentals to real-world applications such as highly sensitive spectroscopy and surface analysis techniques, summarizing the recent progress in plasmonics and their applications, with a focus on comprehensive and authoritative discussions of fabrication and characterization of the materials and their technological uses. The text also addresses current trends and advances in materials for plasmonics, such as nanostructures with novel shapes, composite nanostructures, and thin films. Starting with an overview of optical properties in materials from macro- to micro- and nanoscale, the text then moves on to discuss the fundamentals and dielectric modifications and advanced characterization methods of plasmonic nanostructures. Next, the latest development of metal nanostructures, such as core-shell and porous nanorods, nanowires for conductive films, new star-like nanoplates, different open nanostructures, and metal-semiconductor composite nanostructures, are explained in detail. The final portion of the text discusses applications of plasmonics for semiconductor optoelectronic devices, catalysis, sensing, SERS (surface-enhanced Raman Spectroscopy), and energy. Written by a highly qualified academic, Plasmonic Metal Nanostructures covers sample topics such as: Drude model for free electron gas, dielectric function of the free electron gas, surface plasmon polaritons, plasmon at metal-vacuum interface, and surface plasmon effects Drude-Lorentz model of metal nanoparticles, dielectric properties of complex nanostructures, optical property analysis of isolated nanoparticles, and numerical simulation of optical properties One-dimensional Au nanostructures, core-shell nanostructures, alloy Au/Ag nanorods, porous nanorods, and yolk-shell nanostructures FCC nanoplates, Au nanoplates with novel and well-defined shapes, metal decorated semiconductors, and optical properties of Au NBP-embedded nanostructures Providing complete coverage of plasmonic nanostructures and their applications in catalysis, sensing, spectroscopy, thin-film, analysis, optoelectronics, and a variety of other fields. The book about Plasmonic Metal Nanostructures is an essential resource for materials scientists, physics researchers and photochemists, along with catalytic, biomedical, and physical chemists.

Book Design  Fabrication  and Characterization of TIP enhanced Raman Spectroscopy Probes Based on Metallic Nano antennas

Download or read book Design Fabrication and Characterization of TIP enhanced Raman Spectroscopy Probes Based on Metallic Nano antennas written by Damien Eschimese and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the start of the 2000s the evolution of tip-enhanced Raman spectroscopy (TERS) has enabled the simultaneous measurement of localized structural, molecular, and physicochemical properties. TERS technology combines scanning probe microscopy -- atomic force microscopy (AFM) -- with near field optical microscopy. The combined technique is referred to as AFM-TERS. The technique harnesses and exploits the generation of surface plasmons on metal surfaces. These plasmons lead to the generation of confined electromagnetic waves in a sub-wavelength volume at the very tip of the AFM-TERS probe. The main technological challenge today is the design and optimization of an AFM-TERS probe having nanometer-sized dimensions -- and the controlled, reproducible batch fabrication of such structures. The objective of the work presented in this PhD thesis was to design, fabricate, and characterize a new type of AFM probe capable of bettering the current state-of-the-art performances. The PhD was carried out in collaboration with HORIBA and funded partly by a French 'CIFRE' grant. In order to meet these objects, comprehensive numerical modelling led to the design of an optimized metal nanostructuring having maximum electromagnetic exaltation -- placed at the extremity of a silicon-based AFM cantilever. A new combined micro and nano fabrication process was developed to achieve this -- to be performed using the existing equipment found in the IEMN cleanroom. The process encompasses techniques such as masking using electron beam (ebeam) lithography and UV photolithography, thermal evaporation of metals and 'lift-off' techniques, and highly-controlled dry etching of small silicon mesas structures and deep etching for MEMS cantilever releasing. The process enables the batch-fabrication manufacture of AFM-TERS probes containing matter on the millimeter scale (the silicon probe support), the micrometer scale (the silicon cantilever), and the nanometer scale (the combined metallic disk and cone having sub-wavelength dimensions). This method allows nanostructuring on the optical/plasmonic behavior of TERS probes, the key factor which will lead to higher performance in TERS. Finally, a further study concerning the inclined evaporation of metallic nanostructures via an ebeam-derived lithographic shadow mask was performed in order to control the size and shape of the nanostructuring. The study proved this approach to be feasible. Furthermore, numerical modelling of such structures suggests that they are potential original candidates for both TERS and SERS (surface-enhanced Raman spectroscopy).

Book Plasmonic Au Nanostructures for Surface enhanced Raman Spectroscopy

Download or read book Plasmonic Au Nanostructures for Surface enhanced Raman Spectroscopy written by Xin Sun and published by . This book was released on 2013 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Raman spectroscopy is a spectroscopic technique that provides rich structural information for identifying chemical species but finds limited applications owing to its low sensitivity. Surface-enhanced Raman spectroscopy (SERS) is capable of solving the issue of sensitivity by enormously amplifying the Raman signal through localized surface plasmon resonance (LSPR) that is induced by so-called plasmonic nanostructures. Since the inception of SERS in 1970s, significant efforts have been put in developing SERS-active substrates with high quality in terms of sensitivity, reliability, reproducibility, scalability, throughput, and cost. At present, however, SERS substrates with sufficiently high quality for both research activities and real-world applications have not stood out yet. In this dissertation, four types of plasmonic Au nanostructures will be reviewed with respects to fabrication, characterization, optimization, and evaluation for SERS applications. Firstly, faceted ZnO/Au nanonecklace arrays epitaxially grown on r-plane sapphire substrates by chemical vapor deposition and sputtering will be introduced. Secondly, Au nanoisland arrays prepared by repeated sputtering and post-deposition annealing will be presented. Thirdly, nanoporous Si/Au composites resulting from metal-assisted wet etching and sputtering will be reported. Lastly, we will present a novel plasma nanocoating technique that overcoats SiO2/Au SERS-active nanostructures with an ultra thin polymer layer, followed by the demonstration of benefits brought by such plasma nanocoating. The properties and growth mechanisms of above mentioned plasmonic Au nanostructures were investigated with scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), ellipsometry and contact angle analyzer. By correlating the enhancement of Raman signal with the experimental parameters, recipes for optimized plasmonic nanostructures were established. Furthermore, the applicability of these plasmonic Au nanostructures for SERS purposes was demonstrated by successfully detecting various chemical species at trace level. At the end of the dissertation, a brief summary on these four plasmonic Au nanostructures will be reviewed against the standards of high quality SERS substrates and corresponding recommendations will be proposed to further improve the SERS performance.

Book Rational Design and Advanced Fabrication of Metallic Nanostructures for Surface enhanced Raman Spectroscopy

Download or read book Rational Design and Advanced Fabrication of Metallic Nanostructures for Surface enhanced Raman Spectroscopy written by Betty Cristina Galarreta and published by . This book was released on 2011 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the main challenges in analytical science and technology is to develop devices that provide unambiguously the chemical nature of the material of interest with the minimum intrusiveness, the smallest amount of analyte, and the shortest acquisition time. Among the promising methods for such purpose, optical spectroscopy such as surface-enhanced Raman scattering is considered a suitable option. This spectroscopic technique takes advantage of the interaction between an optical field and metallic nanostructures to magnify the electromagnetic field in the vicinity of the nanostructure, resulting in an amplified signal of the vibrational fingerprints of the adsorbed molecules onto the metallic surface. In this Thesis, the rational design and fabrication of gold nanostructures optimized to probe molecular systems, at the monolayer level in a variety of configurations, is described. Using advanced nanofabrication techniques, two-dimensional arrays of metallic nanostructures were inscribed onto glass slides. The fabricated SERS platforms were first physically and optically characterized. Then, a rational analysis of the properties was performed through numerical calculations and experimental measurements, to estimate the polarization dependence of such nanostructures. The results led toward the optimization of the SERS platforms, and to the study of different complex surface molecular systems. Finally, these platforms were embedded in a microfluidic device for in-situ probing of molecules opening the possibility to develop micro total analysis in combination with Raman measurements.

Book Degradation Resistant Surface Enhanced Raman Spectroscopy Substrates

Download or read book Degradation Resistant Surface Enhanced Raman Spectroscopy Substrates written by Ryan Dale Scherzer and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Raman spectroscopy is employed by NASA, and many others, to detect trace amounts of substances. Unfortunately, the Raman signal is generally too weak to detect when very small, but non-trivial, amounts of molecules are present. One way around this weak signal is to use surface enhanced Raman spectroscopy (SERS). When used as substrates for SERS, metallic nanorods grown using physical vapor deposition (PVD) provide a large enhancement factor to the Raman signal, as much as 1012. However, Silver (Ag) nanorods that give high enhancement suffer from rapid degradation as a function of time and exposure to harsh environment. Exposure to harsh environments is an enormous issue for NASA; considering all environments experienced during space missions will be drastically different from Earth regarding atmosphere pressure, atmosphere composition, and environmental temperature. Au and Ag nanorods suffer from a thermochemical kinetic phenomenon where the surface atoms diffuse and cause the nanostructures to coalesce towards bulk structure. When in bulk, SERS enhancement is lost and the substrate becomes useless. A stable structure for SERS detection is designed through engineering the barriers to surface diffusion. Aluminum (Al) nanorods are forced to undergo surface diffusion through thermal annealing and form rough mounds with a stable terminating oxide layer. When Ag is deposited on top of this Al structure, it becomes kinetically bound and changes to physical structure become impeded. Using this paradigm, samples are grown with varied lengths of Ag and are then characterized using scanning electron microscopy (SEM) and Ultraviolet-Visible spectroscopy. The performance of the samples are then tested using SERS experiments for the detection of trace amounts of rhodamine 6G, a 'gold standard' analyte. Characterization shows the effectiveness of the Raman substrates remains stable up to 500°C. Transitioning to basic scientific investigation, next is to strive to isolate the individual impacts of chemical and physical changes to the Ag nanostructure and how they affect the Raman signal. Substrates are compared over the course of a month long experiment to determine the effects of vacuum storage and addressing the effects of chemical adsorbance. Additionally, this was attempted by comparing the signal degradation of Ag nanorods to that of Au, which is known to be chemically inert, allowing for the separation of chemical and physical effects. Although Ag and Au have similar melting points, Ag physically coarsened significantly more. FTIR also showed significant chemical contamination of the Ag, but not Au. A hypothesis is proposed for future investigations into the chemical changes and how they are coupled with and promote the physical changes in nanostructures. Overall, the novel SERS substrate engineered here may enable the detection of trace amounts of molecules in harsh environments and over long timescales. Conditions such as those found on space missions, where substrates will experience months or years of travel, high vacuum environments, and environments of extreme temperatures.

Book Synthesis  Characterization and Application of SERS active Metal Nanoparticles

Download or read book Synthesis Characterization and Application of SERS active Metal Nanoparticles written by Yan Zhou and published by . This book was released on 2016 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation covers three areas which I have worked on while pursuing my degree. The first chapter includes an introduction of the work presented. The second and third chapters are devoted to design and synthesis a new class of nanoparticles and the related Surface-enhanced Raman Spectroscopy (SERS) and Surface-enhanced Fluorescence (SEF) investigation. Chapter two reported a new strategy to prepare a class of SERS-active nanoparticles with reporters embedded between Au-core/Ag-shell. These core-shell nanoparticles can find use as SERS-tags for Raman-based assay with strong SERS signals and good stability. In chapter three, by adjusting the spacing and the dye position between the core and the shell, we have successfully observed the simultaneous SEF and SERS from our Au-core/Ag-shell nanoparticles. The combination of SEF and SERS onto single nanoparticles is highly desirable to improve the accuracy and sensitivity in detection applications, which has drawn increasing attention in recent years to study the two effects on the same nanostructures. The chapter four covers the applications of previously developed SERS-active nanomaterials. Using the metal core-shell nanoparticles as the SERS substrates, we have successfully performed quantitative SERS measurements of three different types of analytes by embedding an internal reference between the Au core and Ag shell. This strategy provides great flexibility in the choice of the internal references and analytes, and also allows quantitative SERS measurements of the analytes in the solution.

Book A new nanostructured substrate for surface enhanced Raman spectroscopy

Download or read book A new nanostructured substrate for surface enhanced Raman spectroscopy written by Suzanne Pelfrey and published by . This book was released on 2004 with total page 69 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Surface Enhanced Raman Scattering

Download or read book Surface Enhanced Raman Scattering written by Zhong-Qun Tian and published by John Wiley & Sons Incorporated. This book was released on 2010-06-14 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surface-Enhanced Raman Spectroscopy: Principles, Experiments, and Applications is a comprehensive, up to date, and balanced treatment of the theoretical and practical aspects of Surface-Enhanced Raman Scattering (SERS), a useful branch of spectroscopy for several areas of science. This book describes the basic principles of SERS, including SERS mechanisms, performing SERS measurements, and interpreting data. Also emphasized are applications in electrochemistry; catalysis; surface processing and corrosion; Self-Assemble-Layer and L-B Films; polymer science; biology; medicine and drug analysis; sensors; fuel cells; forensics; and archaeology. It is an essential guide for student and professional analytical chemists.

Book Spectroscopy and Characterization of Nanomaterials and Novel Materials

Download or read book Spectroscopy and Characterization of Nanomaterials and Novel Materials written by Prabhakar Misra and published by John Wiley & Sons. This book was released on 2022-03-28 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spectroscopy and Characterization of Nanomaterials and Novel Materials Comprehensive overview of nanomaterial characterization methods and applications from leading researchers in the field In Spectroscopy and Characterization of Nanomaterials and Novel Materials: Experiments, Modeling, Simulations, and Applications, the editor Prabhakar Misra and a team of renowned contributors deliver a practical and up-to-date exploration of the characterization and applications of nanomaterials and other novel materials, including quantum materials and metal clusters. The contributions cover spectroscopic characterization methods for obtaining accurate information on optical, electronic, magnetic, and transport properties of nanomaterials. The book reviews nanomaterial characterization methods with proven relevance to academic and industry research and development teams, and modern methods for the computation of nanomaterials’ structure and properties - including machine-learning approaches - are also explored. Readers will also find descriptions of nanomaterial applications in energy research, optoelectronics, and space science, as well as: A thorough introduction to spectroscopy and characterization of graphitic nanomaterials and metal oxides Comprehensive explorations of simulations of gas separation by adsorption and recent advances in Weyl semimetals and axion insulators Practical discussions of the chemical functionalization of carbon nanotubes and applications to sensors In-depth examinations of micro-Raman imaging of planetary analogs Perfect for physicists, materials scientists, analytical chemists, organic and polymer chemists, and electrical engineers, Spectroscopy and Characterization of Nanomaterials and Novel Materials: Experiments, Modeling, Simulations, and Applications will also earn a place in the libraries of sensor developers and computational physicists and modelers.