EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Characteristics Finite Element Methods in Computational Fluid Dynamics

Download or read book Characteristics Finite Element Methods in Computational Fluid Dynamics written by Joe Iannelli and published by Springer Science & Business Media. This book was released on 2006-09-24 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book details a systematic characteristics-based finite element procedure to investigate incompressible, free-surface and compressible flows. Several sections derive the Fluid Dynamics equations from first thermo-mechanics principles and develop this multi-dimensional and infinite-directional upstream procedure by combining a finite element discretization with an implicit non-linearly stable Runge-Kutta time integration for the numerical solution of the Euler and Navier Stokes equations.

Book Finite Element Methods for Computational Fluid Dynamics

Download or read book Finite Element Methods for Computational Fluid Dynamics written by Dmitri Kuzmin and published by SIAM. This book was released on 2014-12-18 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This informal introduction to computational fluid dynamics and practical guide to numerical simulation of transport phenomena covers the derivation of the governing equations, construction of finite element approximations, and qualitative properties of numerical solutions, among other topics. To make the book accessible to readers with diverse interests and backgrounds, the authors begin at a basic level and advance to numerical tools for increasingly difficult flow problems, emphasizing practical implementation rather than mathematical theory.?Finite Element Methods for Computational Fluid Dynamics: A Practical Guide?explains the basics of the finite element method (FEM) in the context of simple model problems, illustrated by numerical examples. It comprehensively reviews stabilization techniques for convection-dominated transport problems, introducing the reader to streamline diffusion methods, Petrov?Galerkin approximations, Taylor?Galerkin schemes, flux-corrected transport algorithms, and other nonlinear high-resolution schemes, and covers Petrov?Galerkin stabilization, classical projection schemes, Schur complement solvers, and the implementation of the k-epsilon turbulence model in its presentation of the FEM for incompressible flow problem. The book also describes the open-source finite element library ELMER, which is recommended as a software development kit for advanced applications in an online component.?

Book Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

Download or read book Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer written by Ben Q. Li and published by Springer Science & Business Media. This book was released on 2006-06-29 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past several years, significant advances have been made in developing the discontinuous Galerkin finite element method for applications in fluid flow and heat transfer. Certain unique features of the method have made it attractive as an alternative for other popular methods such as finite volume and finite elements in thermal fluids engineering analyses. This book is written as an introductory textbook on the discontinuous finite element method for senior undergraduate and graduate students in the area of thermal science and fluid dynamics. It also can be used as a reference book for researchers and engineers who intend to use the method for research in computational fluid dynamics and heat transfer. A good portion of this book has been used in a course for computational fluid dynamics and heat transfer for senior undergraduate and first year graduate students. It also has been used by some graduate students for self-study of the basics of discontinuous finite elements. This monograph assumes that readers have a basic understanding of thermodynamics, fluid mechanics and heat transfer and some background in numerical analysis. Knowledge of continuous finite elements is not necessary but will be helpful. The book covers the application of the method for the simulation of both macroscopic and micro/nanoscale fluid flow and heat transfer phenomena.

Book Finite Element Methods for Computational Fluid Dynamics

Download or read book Finite Element Methods for Computational Fluid Dynamics written by Dmitri Kuzmin and published by SIAM. This book was released on 2014-12-18 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This informal introduction to computational fluid dynamics and practical guide to numerical simulation of transport phenomena covers the derivation of the governing equations, construction of finite element approximations, and qualitative properties of numerical solutions, among other topics. To make the book accessible to readers with diverse interests and backgrounds, the authors begin at a basic level and advance to numerical tools for increasingly difficult flow problems, emphasizing practical implementation rather than mathematical theory. Finite Element Methods for Computational Fluid Dynamics: A Practical Guide explains the basics of the finite element method (FEM) in the context of simple model problems, illustrated by numerical examples. It comprehensively reviews stabilization techniques for convection-dominated transport problems, introducing the reader to streamline diffusion methods, Petrov?Galerkin approximations, Taylor?Galerkin schemes, flux-corrected transport algorithms, and other nonlinear high-resolution schemes, and covers Petrov?Galerkin stabilization, classical projection schemes, Schur complement solvers, and the implementation of the k-epsilon turbulence model in its presentation of the FEM for incompressible flow problem. The book also describes the open-source finite element library ELMER, which is recommended as a software development kit for advanced applications in an online component.

Book Applied Computational Fluid Dynamics Techniques

Download or read book Applied Computational Fluid Dynamics Techniques written by Rainald Löhner and published by John Wiley & Sons. This book was released on 2001-08-15 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational fluid dynamics (CFD) is concerned with the efficient numerical solution of the partial differential equations that describe fluid dynamics, and CFD techniques are commonly used in many areas of engineering where fluid behavior is a factor. This book covers the range of topics required for a thorough study and understanding of CFD.

Book The Finite Element Method for Fluid Dynamics

Download or read book The Finite Element Method for Fluid Dynamics written by O. C. Zienkiewicz and published by Butterworth Heinemann. This book was released on 2013-11-12 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Finite Element Method for Fluid Dynamics offers a complete introduction the application of the finite element method to fluid mechanics. The book begins with a useful summary of all relevant partial differential equations before moving on to discuss convection stabilization procedures, steady and transient state equations, and numerical solution of fluid dynamic equations. The character-based split (CBS) scheme is introduced and discussed in detail, followed by thorough coverage of incompressible and compressible fluid dynamics, flow through porous media, shallow water flow, and the numerical treatment of long and short waves. Updated throughout, this new edition includes new chapters on: Fluid-structure interaction, including discussion of one-dimensional and multidimensional problems. Biofluid dynamics, covering flow throughout the human arterial system. Focusing on the core knowledge, mathematical and analytical tools needed for successful computational fluid dynamics (CFD), The Finite Element Method for Fluid Dynamics is the authoritative introduction of choice for graduate level students, researchers and professional engineers. A proven keystone reference in the library of any engineer needing to understand and apply the finite element method to fluid mechanics. Founded by an influential pioneer in the field and updated in this seventh edition by leading academics who worked closely with Olgierd C. Zienkiewicz. Features new chapters on fluid-structure interaction and biofluid dynamics, including coverage of one-dimensional flow in flexible pipes and challenges in modeling systemic arterial circulation.

Book Finite Element Methods for Flow Problems

Download or read book Finite Element Methods for Flow Problems written by Jean Donea and published by John Wiley & Sons. This book was released on 2003-06-02 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Die Finite-Elemente-Methode, eines der wichtigsten in der Technik verwendeten numerischen Näherungsverfahren, wird hier gründlich und gut verständlich, aber ohne ein Zuviel an mathematischem Formalismus abgehandelt. Insbesondere geht es um die Anwendung der Methode auf Strömungsprobleme. Alle wesentlichen aktuellen Forschungsergebnisse wurden in den Band aufgenommen; viele davon sind bisher nur verstreut in der Originalliteratur zu finden.

Book The Finite Element Method in Heat Transfer and Fluid Dynamics  Third Edition

Download or read book The Finite Element Method in Heat Transfer and Fluid Dynamics Third Edition written by J. N. Reddy and published by CRC Press. This book was released on 2010-04-06 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: As Computational Fluid Dynamics (CFD) and Computational Heat Transfer (CHT) evolve and become increasingly important in standard engineering design and analysis practice, users require a solid understanding of mechanics and numerical methods to make optimal use of available software. The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition illustrates what a user must know to ensure the optimal application of computational procedures—particularly the Finite Element Method (FEM)—to important problems associated with heat conduction, incompressible viscous flows, and convection heat transfer. This book follows the tradition of the bestselling previous editions, noted for their concise explanation and powerful presentation of useful methodology tailored for use in simulating CFD and CHT. The authors update research developments while retaining the previous editions’ key material and popular style in regard to text organization, equation numbering, references, and symbols. This updated third edition features new or extended coverage of: Coupled problems and parallel processing Mathematical preliminaries and low-speed compressible flows Mode superposition methods and a more detailed account of radiation solution methods Variational multi-scale methods (VMM) and least-squares finite element models (LSFEM) Application of the finite element method to non-isothermal flows Formulation of low-speed, compressible flows With its presentation of realistic, applied examples of FEM in thermal and fluid design analysis, this proven masterwork is an invaluable tool for mastering basic methodology, competently using existing simulation software, and developing simpler special-purpose computer codes. It remains one of the very best resources for understanding numerical methods used in the study of fluid mechanics and heat transfer phenomena.

Book Finite Element Computational Fluid Mechanics

Download or read book Finite Element Computational Fluid Mechanics written by A. J. Baker and published by Taylor & Francis US. This book was released on 1983-01-01 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at advanced level undergraduates, engineers and scientists, this text derives, develops and applies finite-element solution methodology directly to the differential equation systems governing distinct and practical problem classes in fluid

Book The Finite Element Method  Fluid Dynamics

Download or read book The Finite Element Method Fluid Dynamics written by O. C. Zienkiewicz and published by Wiley. This book was released on 2000-10-05 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coverage of the whole range of fluid dynamics - including incompressible slow viscous flow, high-speed supersonic flows, shallow water flow, ocean waves, and metal and plastic forming. Up-to-date material on the Characteristic Galerkin Method. New methodologies for dealing with supersonic and hypersonic behaviours. New material on free surface phenomena. "...the publication of the first edition was an epoch making event...it is written by...the greatest theorist of the subject. If you are serious about finite elements, this is a book that you simply cannot afford to be without." International Journal of Numerical Methods in Engineering. "...the pre-eminent reference work on finite element analysis." Applied Mechanical Review. "...a very good book...presentation is first class...will be of great assistance to all engineers and scientists interested in the method...a very commendable piece of work.—"Journal of the British Society for Strain Measurement.

Book Finite Element Analysis of Non Newtonian Flow

Download or read book Finite Element Analysis of Non Newtonian Flow written by Hou-Cheng Huang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: A follow on from the author's work "Finite Elements in Heat Transfer" which we published 11/94, and which is a powerful CFD programme that will run on a PC. The fluid flow market is larger than the previous, and this package is good value in comparison with other software packages in Computational Fluid Dynamics, which are generally very expensive. The work in general copes with non-Newtonian laminar flow using the finite element method, and some basic theory of the subject is included in the opening chapters of the book.

Book Finite Element Methods for Fluids

Download or read book Finite Element Methods for Fluids written by Olivier Pironneau and published by . This book was released on 1989 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the formulation of problems in fuild mechanics and dynamics, and shows how they can be analyzed and resolved using finite element methods. This practical book also discusses the equations of fluid mechanics and investigates the problems to which these equations can be applied, as well as how they can be analyzed and solved. Contains illustrations of computer simulations using the methods described in the book and features numerous illustrations.

Book Finite Elements for Analysis and Design

Download or read book Finite Elements for Analysis and Design written by J. E. Akin and published by Elsevier. This book was released on 2014-06-28 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: The finite element method (FEM) is an analysis tool for problem-solving used throughout applied mathematics, engineering, and scientific computing. Finite Elements for Analysis and Design provides a thoroughlyrevised and up-to-date account of this important tool and its numerous applications, with added emphasis on basic theory. Numerous worked examples are included to illustrate the material. Akin clearly explains the FEM, a numerical analysis tool for problem-solving throughout applied mathematics, engineering and scientific computing Basic theory has been added in the book, including worked examples to enable students to understand the concepts Contains coverage of computational topics, including worked examples to enable students to understand concepts Improved coverage of sensitivity analysis and computational fluid dynamics Uses example applications to increase students' understanding Includes a disk with the FORTRAN source for the programs cided in the text

Book Least Squares Finite Element Method   Theory and Applications in Computational Fluid Dynamics

Download or read book Least Squares Finite Element Method Theory and Applications in Computational Fluid Dynamics written by B. N. Jiang and published by . This book was released on 1995 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Finite Volume Method in Computational Fluid Dynamics

Download or read book The Finite Volume Method in Computational Fluid Dynamics written by F. Moukalled and published by Springer. This book was released on 2015-08-13 with total page 791 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.

Book Numerical Simulation of Incompressible Viscous Flow

Download or read book Numerical Simulation of Incompressible Viscous Flow written by Roland Glowinski and published by Walter de Gruyter GmbH & Co KG. This book was released on 2022-09-20 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on finite element-based computational methods for solving incompressible viscous fluid flow problems shows readers how to apply operator splitting techniques to decouple complicated computational fluid dynamics problems into a sequence of relatively simpler sub-problems at each time step, such as hemispherical cavity flow, cavity flow of an Oldroyd-B viscoelastic flow, and particle interaction in an Oldroyd-B type viscoelastic fluid. Efficient and robust numerical methods for solving those resulting simpler sub-problems are introduced and discussed. Interesting computational results are presented to show the capability of methodologies addressed in the book.

Book Computational Fluid Dynamics

    Book Details:
  • Author : John F. Wendt
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-09
  • ISBN : 3662113503
  • Pages : 299 pages

Download or read book Computational Fluid Dynamics written by John F. Wendt and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an outgrowth of a von Kannan Institute Lecture Series by the same title first presented in 1985 and repeated with modifications in succeeding years. The objective, then and now, was to present the subject of computational fluid dynamics (CFD) to an audience unfamiliar with all but the most basic aspects of numerical techniques and to do so in such a way that the practical application ofCFD would become clear to everyone. Remarks from hundreds of persons who followed this course encouraged the editor and the authors to improve the content and organization year by year and eventually to produce the present volume. The book is divided into two parts. In the first part, John Anderson lays out the subject by first describing the governing equations offluid dynamics, concentration on their mathematical properties which contain the keys to the choice of the numerical approach. Methods of discretizing the equations are discussed next and then transformation techniques and grids are also discussed. This section closes with two examples of numerical methods which can be understood easily by all concerned: source and vortex panel methods and the explicit method. The second part of the book is devoted to four self-contained chapters on more advanced material: Roger Grundmann treats the boundary layer equations and methods of solution; Gerard Degrez treats implicit time-marching methods for inviscid and viscous compressible flows, and Eric Dick treats, in two separate articles, both finite-volume and finite-element methods.