Download or read book Character Theory and the McKay Conjecture written by Gabriel Navarro and published by Cambridge University Press. This book was released on 2018-04-26 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents contemporary character theory of finite groups from the basics to the state of the art, with new, refined proofs.
Download or read book Character Theory and the McKay Conjecture written by Gabriel Navarro and published by Cambridge University Press. This book was released on 2018-04-26 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: The McKay conjecture is the origin of the counting conjectures in the representation theory of finite groups. This book gives a comprehensive introduction to these conjectures, while assuming minimal background knowledge. Character theory is explored in detail along the way, from the very basics to the state of the art. This includes not only older theorems, but some brand new ones too. New, elegant proofs bring the reader up to date on progress in the field, leading to the final proof that if all finite simple groups satisfy the inductive McKay condition, then the McKay conjecture is true. Open questions are presented throughout the book, and each chapter ends with a list of problems, with varying degrees of difficulty.
Download or read book The Character Theory of Finite Groups of Lie Type written by Meinolf Geck and published by Cambridge University Press. This book was released on 2020-02-27 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to the vast literature and range of results around Lusztig's character theory of finite groups of Lie type.
Download or read book The Character Theory of Finite Groups of Lie Type written by Meinolf Geck and published by Cambridge University Press. This book was released on 2020-02-27 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through the fundamental work of Deligne and Lusztig in the 1970s, further developed mainly by Lusztig, the character theory of reductive groups over finite fields has grown into a rich and vast area of mathematics. It incorporates tools and methods from algebraic geometry, topology, combinatorics and computer algebra, and has since evolved substantially. With this book, the authors meet the need for a contemporary treatment, complementing in core areas the well-established books of Carter and Digne–Michel. Focusing on applications in finite group theory, the authors gather previously scattered results and allow the reader to get to grips with the large body of literature available on the subject, covering topics such as regular embeddings, the Jordan decomposition of characters, d-Harish–Chandra theory and Lusztig induction for unipotent characters. Requiring only a modest background in algebraic geometry, this useful reference is suitable for beginning graduate students as well as researchers.
Download or read book Group Theory and Computation written by N.S. Narasimha Sastry and published by Springer. This book was released on 2018-09-21 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a blend of recent developments in theoretical and computational aspects of group theory. It presents the state-of-the-art research topics in different aspects of group theory, namely, character theory, representation theory, integral group rings, the Monster simple group, computational algorithms and methods on finite groups, finite loops, periodic groups, Camina groups and generalizations, automorphisms and non-abelian tensor product of groups. Presenting a collection of invited articles by some of the leading and highly active researchers in the theory of finite groups and their representations and the Monster group, with a focus on computational aspects, this book is of particular interest to researchers in the area of group theory and related fields of mathematics.
Download or read book Characters of Solvable Groups written by I. Martin Isaacs and published by American Mathematical Soc.. This book was released on 2018-05-23 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, which can be considered as a sequel of the author's famous book Character Theory of Finite Groups, concerns the character theory of finite solvable groups and other groups that have an abundance of normal subgroups. It is subdivided into three parts: -theory, character correspondences, and M-groups. The -theory section contains an exposition of D. Gajendragadkar's -special characters, and it includes various extensions, generalizations, and applications of his work. The character correspondences section proves the McKay character counting conjecture and the Alperin weight conjecture for solvable groups, and it constructs a canonical McKay bijection for odd-order groups. In addition to a review of some basic material on M-groups, the third section contains an exposition of the use of symplectic modules for studying M-groups. In particular, an accessible presentation of E. C. Dade's deep results on monomial characters of odd prime-power degree is included. Very little of this material has previously appeared in book form, and much of it is based on the author's research. By reading a clean and accessible presentation written by the leading expert in the field, researchers and graduate students will be inspired to learn and work in this area that has fascinated the author for decades.
Download or read book Symmetry in Graphs written by Ted Dobson and published by Cambridge University Press. This book was released on 2022-05-12 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first full-length book on the theme of symmetry in graphs, a fast-growing topic in algebraic graph theory.
Download or read book Functional Analysis written by Jan van Neerven and published by Cambridge University Press. This book was released on 2022-07-07 with total page 728 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive introduction to functional analysis covers both the abstract theory and applications to spectral theory, the theory of partial differential equations, and quantum mechanics. It starts with the basic results of the subject and progresses towards a treatment of several advanced topics not commonly found in functional analysis textbooks, including Fredholm theory, form methods, boundary value problems, semigroup theory, trace formulas, and a mathematical treatment of states and observables in quantum mechanics. The book is accessible to graduate students with basic knowledge of topology, real and complex analysis, and measure theory. With carefully written out proofs, more than 300 problems, and appendices covering the prerequisites, this self-contained volume can be used as a text for various courses at the graduate level and as a reference text for researchers in the field.
Download or read book p adic Differential Equations written by Kiran S. Kedlaya and published by Cambridge University Press. This book was released on 2022-06-09 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its second edition, this volume provides a uniquely detailed study of $P$-adic differential equations. Assuming only a graduate-level background in number theory, the text builds the theory from first principles all the way to the frontiers of current research, highlighting analogies and links with the classical theory of ordinary differential equations. The author includes many original results which play a key role in the study of $P$-adic geometry, crystalline cohomology, $P$-adic Hodge theory, perfectoid spaces, and algorithms for L-functions of arithmetic varieties. This updated edition contains five new chapters, which revisit the theory of convergence of solutions of $P$-adic differential equations from a more global viewpoint, introducing the Berkovich analytification of the projective line, defining convergence polygons as functions on the projective line, and deriving a global index theorem in terms of the Laplacian of the convergence polygon.
Download or read book Optimal Mass Transport on Euclidean Spaces written by Francesco Maggi and published by Cambridge University Press. This book was released on 2023-10-31 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: A pedagogical introduction to the key ideas and theoretical foundation of optimal mass transport for a graduate course or self-study.
Download or read book The Geometry of Cubic Hypersurfaces written by Daniel Huybrechts and published by Cambridge University Press. This book was released on 2023-06-30 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed introduction to cubic hypersurfaces, applying diverse techniques to a central class of algebraic varieties.
Download or read book Geometric Inverse Problems written by Gabriel P. Paternain and published by Cambridge University Press. This book was released on 2023-01-05 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This up-to-date treatment of recent developments in geometric inverse problems introduces graduate students and researchers to an exciting area of research. With an emphasis on the two-dimensional case, topics covered include geodesic X-ray transforms, boundary rigidity, tensor tomography, attenuated X-ray transforms and the Calderón problem. The presentation is self-contained and begins with the Radon transform and radial sound speeds as motivating examples. The required geometric background is developed in detail in the context of simple manifolds with boundary. An in-depth analysis of various geodesic X-ray transforms is carried out together with related uniqueness, stability, reconstruction and range characterization results. Highlights include a proof of boundary rigidity for simple surfaces as well as scattering rigidity for connections. The concluding chapter discusses current open problems and related topics. The numerous exercises and examples make this book an excellent self-study resource or text for a one-semester course or seminar.
Download or read book Dimension Groups and Dynamical Systems written by Fabien Durand and published by Cambridge University Press. This book was released on 2022-02-03 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first self-contained exposition of the fascinating link between dynamical systems and dimension groups. The authors explore the rich interplay between topological properties of dynamical systems and the algebraic structures associated with them, with an emphasis on symbolic systems, particularly substitution systems. It is recommended for anybody with an interest in topological and symbolic dynamics, automata theory or combinatorics on words. Intended to serve as an introduction for graduate students and other newcomers to the field as well as a reference for established researchers, the book includes a thorough account of the background notions as well as detailed exposition – with full proofs – of the major results of the subject. A wealth of examples and exercises, with solutions, serve to build intuition, while the many open problems collected at the end provide jumping-off points for future research.
Download or read book Equivariant Cohomology in Algebraic Geometry written by David Anderson and published by Cambridge University Press. This book was released on 2023-11-30 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: A graduate-level introduction to the core notions of equivariant cohomology, an indispensable tool in several areas of modern mathematics.
Download or read book Harmonic Functions and Random Walks on Groups written by Ariel Yadin and published by Cambridge University Press. This book was released on 2024-05-31 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research in recent years has highlighted the deep connections between the algebraic, geometric, and analytic structures of a discrete group. New methods and ideas have resulted in an exciting field, with many opportunities for new researchers. This book is an introduction to the area from a modern vantage point. It incorporates the main basics, such as Kesten's amenability criterion, Coulhon and Saloff-Coste inequality, random walk entropy and bounded harmonic functions, the Choquet–Deny Theorem, the Milnor–Wolf Theorem, and a complete proof of Gromov's Theorem on polynomial growth groups. The book is especially appropriate for young researchers, and those new to the field, accessible even to graduate students. An abundance of examples, exercises, and solutions encourage self-reflection and the internalization of the concepts introduced. The author also points to open problems and possibilities for further research.
Download or read book Polytopes and Graphs written by Guillermo Pineda Villavicencio and published by Cambridge University Press. This book was released on 2024-02-29 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces convex polytopes and their graphs, alongside the results and methodologies required to study them. It guides the reader from the basics to current research, presenting many open problems to facilitate the transition. The book includes results not previously found in other books, such as: the edge connectivity and linkedness of graphs of polytopes; the characterisation of their cycle space; the Minkowski decomposition of polytopes from the perspective of geometric graphs; Lei Xue's recent lower bound theorem on the number of faces of polytopes with a small number of vertices; and Gil Kalai's rigidity proof of the lower bound theorem for simplicial polytopes. This accessible introduction covers prerequisites from linear algebra, graph theory, and polytope theory. Each chapter concludes with exercises of varying difficulty, designed to help the reader engage with new concepts. These features make the book ideal for students and researchers new to the field.
Download or read book Enumerative Combinatorics written by Richard Stanley and published by Cambridge University Press. This book was released on 2023-08-17 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: Revised second volume of the standard guide to enumerative combinatorics, including the theory of symmetric functions and 159 new exercises.