EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Cesium Removal from Hanford Tank Waste

Download or read book Cesium Removal from Hanford Tank Waste written by Dean E. Kurath and published by . This book was released on 1993 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Evaluating Residence Time for Cesium Removal from Simulated Hanford Tank Wastes Using SuperLig R  644 Resin

Download or read book Evaluating Residence Time for Cesium Removal from Simulated Hanford Tank Wastes Using SuperLig R 644 Resin written by and published by . This book was released on 2003 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Batch contact and column experiments were performed to evaluate the effect of residence time on cesium (Cs) removal from two simulated Hanford tank wastes using SuperLig(R) 644 resin. The two waste simulants mimic the compositions of tanks 241-AZ-102 and 241-AN-107 at the U.S. Department of Energy (DOE) Hanford site. A single column made of glass tube (2.7-cm i.d.), which contained approximately 100 mL of H-form SuperLig(R) 644 resin was used in the column experiments. The experiments each consisted of loading, elution, and regeneration steps were performed at flow rates ranging from 0.64 to 8.2 BV/h for AZ-102 and from 1.5 to 18 BV/h for AN-107 simulant. The lowest flow rates of 0.64 and 1.5 BV/h were selected to evaluate less than optimal flow conditions in the plant. The range of the flow rates is consistent with the River Protection Project design for the waste treatment plant (WTP) columns, which will operate at a flow rate between 1.5 to 3 BV/h. Batch contact experiments were also performed for two batches of SuperLig(R) 644 to determine the equilibrium distribution coefficients (Kds) as a function of Cs concentration.

Book Hanford Tank Waste Supernatant Cesium Removal Test Plan

Download or read book Hanford Tank Waste Supernatant Cesium Removal Test Plan written by and published by . This book was released on 1996 with total page 57 pages. Available in PDF, EPUB and Kindle. Book excerpt: This document provides the test plan for the preparation and conduct of a cesium removal test using Hanford DSSF supernatant liquor from tank 241-AW-101 in a bench-scale column. Cesium sorbents to be tested include resorcinol-formaldehyde resin and crystalline silicotitanate.

Book Test Procedures and Instructions for Hanford Tank Waste Supernatant Cesium Removal

Download or read book Test Procedures and Instructions for Hanford Tank Waste Supernatant Cesium Removal written by and published by . This book was released on 1996 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test using Hanford Double-Shell Slurry Feed supernatant liquor from tank 251-AW-101 in a bench-scale column. Cesium sorbents to be tested include resorcinol-formaldehyde resin and crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-022, Hanford Tank Waste Supernatant Cesium Removal Test Plan.

Book The Effect of Temperature of SuperLig  R  644 Cesium Removal from Simulated Hanford Tank Waste Supernate

Download or read book The Effect of Temperature of SuperLig R 644 Cesium Removal from Simulated Hanford Tank Waste Supernate written by and published by . This book was released on 2002 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Batch kinetic and column experiments have been carried out at 25, 35, and 45 Degrees C to examine the effect of temperature on SuperLig(R) 644 cesium (Cs) removal from simulated Hanford tank waste supernate. The simulated solution mimicked the composition of the low-activity waste supernate from tank 241-AN-105 in the U.S. DOE Hanford site. Small quantities of toxic metals, such as Cd, Cr, Fe, and Pb were spiked into the simulant to evaluate the metal's competitiveness with Cs for sorption on SuperLig(R) 644 resin. The results indicated that the temperature affects the removal of Cs and metal ions, although the effect was not the same for all metal ions. The extent of Cs removal decreased with an increase in temperature. The Cs capacity at breakthrough point was 0.015, 0.013, and 0.011-mmole/g dry resin at 25, 35 and 45 Degrees C, respectively. The column was effectively eluted to less than 1 Percent (0.1 C/Co) of the feed concentration with approximately 10 BVs of 0.5 M nitric acid. The resin showed limited affinity for toxic metal ions (Cr, Cd, Fe, and Pb) as compared to Cs. Based on the batch kinetic data, the Cs uptake of the resin was not hampered by the presence of the toxic metals in solution.

Book Tank Waste Retrieval  Processing  and On site Disposal at Three Department of Energy Sites

Download or read book Tank Waste Retrieval Processing and On site Disposal at Three Department of Energy Sites written by National Research Council and published by National Academies Press. This book was released on 2006-10-12 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: DOE Tank Waste: How clean is clean enough? The U.S. Congress asked the National Academies to evaluate the Department of Energy's (DOE's) plans for cleaning up defense-related radioactive wastes stored in underground tanks at three sites: the Hanford Site in Washington State, the Savannah River Site in South Carolina, and the Idaho National Laboratory. DOE plans to remove the waste from the tanks, separate out high-level radioactive waste to be shipped to an off-site geological repository, and dispose of the remaining lower-activity waste onsite. The report concludes that DOE's overall plan is workable, but some important challenges must be overcomeâ€"including the removal of residual waste from some tanks, especially at Hanford and Savannah River. The report recommends that DOE pursue a more risk-informed, consistent, participatory, and transparent for making decisions about how much waste to retrieve from tanks and how much to dispose of onsite. The report offers several other detailed recommendations to improve the technical soundness of DOE's tank cleanup plans.

Book Cesium Ion Exchange Program at the Hanford River Protection Project Waste Treatment Plant

Download or read book Cesium Ion Exchange Program at the Hanford River Protection Project Waste Treatment Plant written by NASH. CHARLES and published by . This book was released on 2004 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: The River Protection Project - Hanford Tank Waste Treatment and Immobilization Plant will use cesium ion exchange to remove 137Cs from Low Activity Waste down to 0.3 Ci/m3 in the Immobilized LAW, ILAW product. The project baseline for cesium ion exchange is the elutable SuperLig, R, 644, SL-644, resin registered trademark of IBC Advanced Technologies, Inc., American Fork, UT or the Department of Energy approved equivalent. SL-644 is solely available through IBC Advanced Technologies. To provide an alternative to this sole-source resin supply, the RPP-WTP initiated a three-stage process for selection and qualification of an alternative ion exchange resin for cesium removal in the RPPWTP. It was recommended that resorcinol formaldehyde RF be pursued as a potential alternative to SL-644.

Book Cesium Removal Using Crystalline Silicotitanate  Innovative Technology Summary Report

Download or read book Cesium Removal Using Crystalline Silicotitanate Innovative Technology Summary Report written by and published by . This book was released on 1999 with total page 21 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approximately 100 million gallons of radioactive waste is stored in underground storage tanks at the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation, and Savannah River Site (SRS). Most of the radioactivity comes from 137Cs, which emits high-activity gamma radiation. The Cesium Removal System is a modular, transportable, ion-exchange system configured as a compact processing unit. Liquid tank waste flows through columns packed with solid material, called a sorbent, that selectively adsorbs cesium and allows the other materials to pass through. The sorbent is crystalline silicotitanate (CST), an engineered material with a high capacity for sorbing cesium from alkaline wastes. The Cesium Removal System was demonstrated at Oak Ridge using Melton Valley Storage Tank (MVST) waste for feed. Demonstration operations began in September 1996 and were completed during June 1997. Prior to the demonstration, a number of ion-exchange materials were evaluated at Oak Ridge with MVST waste. Also, three ion-exchange materials and three waste types were tested at Hanford. These bench-scale tests were conducted in a hot cell. Hanford's results showed that 300 times less sorbent was used by selecting Ionsiv IE-911 over organic ion-exchange resins for cesium removal. This paper gives a description of the technology and discusses its performance, applications, cost, regulatory and policy issues and lessons learned.

Book Cesium Removal from Tanks 241 AN 103   241 SX 105   241 AZ 101 102 Composite for Testing in Bench Scale Steam Reformer

Download or read book Cesium Removal from Tanks 241 AN 103 241 SX 105 241 AZ 101 102 Composite for Testing in Bench Scale Steam Reformer written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-10-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FB SR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-S.2.1-20 1 0-00 1, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, 'Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using Hanford Waste Samples.'

Book Multiple Ion Exchange Column Runs for Cesium and Technetium Removal from AW 101 Waste Sample

Download or read book Multiple Ion Exchange Column Runs for Cesium and Technetium Removal from AW 101 Waste Sample written by and published by . This book was released on 2004 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: The River Protection Project -Waste Treatment Plant (RPP-WTP) will be performing cesium removal from Hanford tank waste supernatants using SuperLig 644 resin. These elutable resins will be used multiple times to process large volumes of radioactive waste samples and will be subjected to chemical and radiation degradation during use at the waste treatment plant (WTP). The RPP-WTP process design assumes that resin batches can be used a minimum of 10 cycles before the resin must be replaced due to degradation. The effects of radiation and chemical degradation on SuperLig 644 and 639 resins were separately studied in the past under static conditions, i.e., in contact with air, water, and simulated waste solutions. To determine the chemical degradation effects under dynamic or column conditions, Battelle, Pacific Northwest National Laboratory (PNNL), and IBC Advanced Technologies conducted multiple load/elute/regenerate cycles with simulated Hanford waste samples. Savannah River Technology Center (SRTC) was contracted to demonstrate the performance of SuperLig 644 and 639 resins to treat repetitively radioactive waste solutions. Six cycles of loading, elution, and regeneration were performed to remove cesium from a Hanford waste sample. Five load/elute/regenerate cycles were carried out to remove technetium from cesium-depleted effluent solutions. The multiple load/elute/regenerate cycles demonstrated that cesium and technetium can be effectively removed from a sample using SuperLig 644 and 639 resins. The percent cesium removal was greater than 99.99 per cent for each of the six cycles.

Book

    Book Details:
  • Author :
  • Publisher :
  • Release : 1899
  • ISBN :
  • Pages : pages

Download or read book written by and published by . This book was released on 1899 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: