EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Commuting Elements in Q deformed Heisenberg Algebras

Download or read book Commuting Elements in Q deformed Heisenberg Algebras written by Lars Hellstr”m and published by World Scientific. This book was released on 2000 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noncommutative algebras, rings and other noncommutative objects, along with their more classical commutative counterparts, have become a key part of modern mathematics, physics and many other fields. The q-deformed Heisenberg algebras defined by deformed Heisenberg canonical commutation relations of quantum mechanics play a distinguished role as important objects in pure mathematics and in many applications in physics. The structure of commuting elements in an algebra is of fundamental importance for its structure and representation theory as well as for its applications. The main objects studied in this monograph are q-deformed Heisenberg algebras -- more specifically, commuting elements in q-deformed Heisenberg algebras. In this book the structure of commuting elements in q-deformed Heisenberg algebras is studied in a systematic way. Many new results are presented with complete proofs. Several appendices with some general theory used in other parts of the book include material on the Diamond lemma for ring theory, a theory of degree functions in arbitrary associative algebras, and some basic facts about q-combinatorial functions over an arbitrary field. The bibliography contains, in addition to references on q-deformed Heisenberg algebras, some selected references on related subjects and on existing and potential applications. The book is self-contained, as far as proofs and the background material are concerned. In addition to research and reference purposes, it can be used in a special course or a series of lectures on the subject or as complementary material to a general course on algebra. Specialists as well as doctoral and advanced undergraduate students in mathematics andphysics will find this book useful in their research and study.

Book Engineering Mathematics II

Download or read book Engineering Mathematics II written by Sergei Silvestrov and published by Springer. This book was released on 2017-02-10 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the latest advances in engineering mathematics with a main focus on the mathematical models, structures, concepts, problems and computational methods and algorithms most relevant for applications in modern technologies and engineering. It addresses mathematical methods of algebra, applied matrix analysis, operator analysis, probability theory and stochastic processes, geometry and computational methods in network analysis, data classification, ranking and optimisation. The individual chapters cover both theory and applications, and include a wealth of figures, schemes, algorithms, tables and results of data analysis and simulation. Presenting new methods and results, reviews of cutting-edge research, and open problems for future research, they equip readers to develop new mathematical methods and concepts of their own, and to further compare and analyse the methods and results discussed. The book consists of contributed chapters covering research developed as a result of a focused international seminar series on mathematics and applied mathematics and a series of three focused international research workshops on engineering mathematics organised by the Research Environment in Mathematics and Applied Mathematics at Mälardalen University from autumn 2014 to autumn 2015: the International Workshop on Engineering Mathematics for Electromagnetics and Health Technology; the International Workshop on Engineering Mathematics, Algebra, Analysis and Electromagnetics; and the 1st Swedish-Estonian International Workshop on Engineering Mathematics, Algebra, Analysis and Applications. It serves as a source of inspiration for a broad spectrum of researchers and research students in applied mathematics, as well as in the areas of applications of mathematics considered in the book.

Book Studies in Lie Theory

    Book Details:
  • Author : Joseph Bernstein
  • Publisher : Springer Science & Business Media
  • Release : 2006-07-27
  • ISBN : 0817644784
  • Pages : 508 pages

Download or read book Studies in Lie Theory written by Joseph Bernstein and published by Springer Science & Business Media. This book was released on 2006-07-27 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains new results on different aspects of Lie theory, including Lie superalgebras, quantum groups, crystal bases, representations of reductive groups in finite characteristic, and the geometric Langlands program

Book Lectures On Sl 2 c  modules

    Book Details:
  • Author : Volodymyr Mazorchuk
  • Publisher : World Scientific Publishing Company
  • Release : 2009-12-04
  • ISBN : 1911299441
  • Pages : 274 pages

Download or read book Lectures On Sl 2 c modules written by Volodymyr Mazorchuk and published by World Scientific Publishing Company. This book was released on 2009-12-04 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is directed primarily at undergraduate and postgraduate students interested to get acquainted with the representation theory of Lie algebras. The book treats the case of the smallest simple Lie algebra, namely, the Lie algebra sl_2. It contains classical contents including the description of all finite-dimensional modules and an introduction to the universal enveloping algebras with its primitive ideals, alongside non-classical contents including the description of all simple weight modules, the category of all weight modules, a detailed description of the category O, and especially, a description of all simple modules. The book also contains an account of a new research direction: the categorification of simple finite-dimensional modules./a

Book Algebraic Structures and Applications

Download or read book Algebraic Structures and Applications written by Sergei Silvestrov and published by Springer Nature. This book was released on 2020-06-18 with total page 976 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the latest advances in algebraic structures and applications, and focuses on mathematical concepts, methods, structures, problems, algorithms and computational methods important in the natural sciences, engineering and modern technologies. In particular, it features mathematical methods and models of non-commutative and non-associative algebras, hom-algebra structures, generalizations of differential calculus, quantum deformations of algebras, Lie algebras and their generalizations, semi-groups and groups, constructive algebra, matrix analysis and its interplay with topology, knot theory, dynamical systems, functional analysis, stochastic processes, perturbation analysis of Markov chains, and applications in network analysis, financial mathematics and engineering mathematics. The book addresses both theory and applications, which are illustrated with a wealth of ideas, proofs and examples to help readers understand the material and develop new mathematical methods and concepts of their own. The high-quality chapters share a wealth of new methods and results, review cutting-edge research and discuss open problems and directions for future research. Taken together, they offer a source of inspiration for a broad range of researchers and research students whose work involves algebraic structures and their applications, probability theory and mathematical statistics, applied mathematics, engineering mathematics and related areas.

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 2002 with total page 1092 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Non commutative and Non associative Algebra and Analysis Structures

Download or read book Non commutative and Non associative Algebra and Analysis Structures written by Sergei Silvestrov and published by Springer Nature. This book was released on 2023-09-25 with total page 833 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of the 2019 conference on Stochastic Processes and Algebraic Structures held in SPAS2019, Västerås, Sweden, from September 30th to October 2nd 2019 was to showcase the frontiers of research in several important topics of mathematics, mathematical statistics, and its applications. The conference has been organized along the following tracks: 1. Stochastic processes and modern statistical methods in theory and practice, 2. Engineering Mathematics, 3. Algebraic Structures and applications. This book highlights the latest advances in algebraic structures and applications focused on mathematical notions, methods, structures, concepts, problems, algorithms, and computational methods for the natural sciences, engineering, and modern technology. In particular, the book features mathematical methods and models from non-commutative and non-associative algebras and rings associated to generalizations of differential calculus, quantum deformations of algebras, Lie algebras, Lie superalgebras, color Lie algebras, Hom-algebras and their n-ary generalizations, semi-groups and group algebras, non-commutative and non-associative algebras and computational algebra interplay with q-special functions and q-analysis, topology, dynamical systems, representation theory, operator theory and functional analysis, applications of algebraic structures in coding theory, information analysis, geometry and probability theory. The book gathers selected, high-quality contributed chapters from several large research communities working on modern algebraic structures and their applications. The chapters cover both theory and applications, and are illustrated with a wealth of ideas, theorems, notions, proofs, examples, open problems, and results on the interplay of algebraic structures with other parts of Mathematics. The applications help readers grasp the material, and encourage them to develop new mathematical methods and concepts in their future research. Presenting new methods and results, reviews of cutting-edge research, open problems, and directions for future research, will serve as a source of inspiration for a broad range of researchers and students.

Book Lie Groups  Number Theory  and Vertex Algebras

Download or read book Lie Groups Number Theory and Vertex Algebras written by Dražen Adamović and published by American Mathematical Soc.. This book was released on 2021-05-10 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the conference Representation Theory XVI, held from June 25–29, 2019, in Dubrovnik, Croatia. The articles in the volume address selected aspects of representation theory of reductive Lie groups and vertex algebras, and are written by prominent experts in the field as well as junior researchers. The three main topics of these articles are Lie theory, number theory, and vertex algebras.

Book Algebra  Geometry and Mathematical Physics

Download or read book Algebra Geometry and Mathematical Physics written by Abdenacer Makhlouf and published by Springer. This book was released on 2014-06-17 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers and advanced students.

Book Commutation Relations  Normal Ordering  and Stirling Numbers

Download or read book Commutation Relations Normal Ordering and Stirling Numbers written by Toufik Mansour and published by CRC Press. This book was released on 2015-09-18 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Commutation Relations, Normal Ordering, and Stirling Numbers provides an introduction to the combinatorial aspects of normal ordering in the Weyl algebra and some of its close relatives. The Weyl algebra is the algebra generated by two letters U and V subject to the commutation relation UV - VU = I. It is a classical result that normal ordering pow

Book Revue roumaine de math  matiques pures et appliques

Download or read book Revue roumaine de math matiques pures et appliques written by and published by . This book was released on 2001 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Commuting Elements In Q deformed Heisenberg Algebras

Download or read book Commuting Elements In Q deformed Heisenberg Algebras written by Lars Hellstrom and published by World Scientific. This book was released on 2000-09-27 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noncommutative algebras, rings and other noncommutative objects, along with their more classical commutative counterparts, have become a key part of modern mathematics, physics and many other fields. The q-deformed Heisenberg algebras defined by deformed Heisenberg canonical commutation relations of quantum mechanics play a distinguished role as important objects in pure mathematics and in many applications in physics. The structure of commuting elements in an algebra is of fundamental importance for its structure and representation theory as well as for its applications. The main objects studied in this monograph are q-deformed Heisenberg algebras — more specifically, commuting elements in q-deformed Heisenberg algebras.In this book the structure of commuting elements in q-deformed Heisenberg algebras is studied in a systematic way. Many new results are presented with complete proofs. Several appendices with some general theory used in other parts of the book include material on the Diamond lemma for ring theory, a theory of degree functions in arbitrary associative algebras, and some basic facts about q-combinatorial functions over an arbitrary field. The bibliography contains, in addition to references on q-deformed Heisenberg algebras, some selected references on related subjects and on existing and potential applications.The book is self-contained, as far as proofs and the background material are concerned. In addition to research and reference purposes, it can be used in a special course or a series of lectures on the subject or as complementary material to a general course on algebra. Specialists as well as doctoral and advanced undergraduate students in mathematics and physics will find this book useful in their research and study.

Book Chinese Physics Letters

Download or read book Chinese Physics Letters written by and published by . This book was released on 2005 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantum Groups and Their Applications in Physics

Download or read book Quantum Groups and Their Applications in Physics written by Leonardo Castellani and published by IOS Press. This book was released on 1996 with total page 950 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on quantum groups, i.e., continuous deformations of Lie groups, and their applications in physics. These algebraic structures have been studied in the last decade by a growing number of mathematicians and physicists, and are found to underlie many physical systems of interest. They do provide, in fact, a sort of common algebraic ground for seemingly very different physical problems. As it has happened for supersymmetry, the q-group symmetries are bound to play a vital role in physics, even in fundamental theories like gauge theory or gravity. In fact q-symmetry can be considered itself as a generalization of supersymmetry, evident in the q-commutator formulation. The hope that field theories on q-groups are naturally reguralized begins to appear founded, and opens new perspectives for quantum gravity. The topics covered in this book include: conformal field theories and quantum groups, gauge theories of quantum groups, anyons, differential calculus on quantum groups and non-commutative geometry, poisson algebras, 2-dimensional statistical models, (2+1) quantum gravity, quantum groups and lattice physics, inhomogeneous q-groups, q-Poincaregroup and deformed gravity and gauging of W-algebras.

Book Physics Briefs

Download or read book Physics Briefs written by and published by . This book was released on 1993 with total page 1116 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 1997 with total page 860 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Introduction to Representation Theory

Download or read book Introduction to Representation Theory written by Pavel I. Etingof and published by American Mathematical Soc.. This book was released on 2011 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.