EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Catalytic Oxidative Coupling of Methane with Consecutive Gas phase Reaction

Download or read book Catalytic Oxidative Coupling of Methane with Consecutive Gas phase Reaction written by Pearcey Craig David and published by . This book was released on 1994 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Catalytic oxidative coupling of methane with consequetive gas phase reaction

Download or read book Catalytic oxidative coupling of methane with consequetive gas phase reaction written by Craig David Pearcey and published by . This book was released on 1994 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Methane Conversion by Oxidative Processes

Download or read book Methane Conversion by Oxidative Processes written by Wolf and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: A reasonable case could be made that the scientific interest in catalytic oxidation was the basis for the recognition of the phenomenon of catalysis. Davy, in his attempt in 1817 to understand the science associated with the safety lamp he had invented a few years earlier, undertook a series of studies that led him to make the observation that a jet of gas, primarily methane, would cause a platinum wire to continue to glow even though the flame was extinguished and there was no visible flame. Dobereiner reported in 1823 the results of a similar investigation and observed that spongy platina would cause the ignition of a stream of hydrogen in air. Based on this observation Dobereiner invented the first lighter. His lighter employed hydrogen (generated from zinc and sulfuric acid) which passed over finely divided platinum and which ignited the gas. Thousands of these lighters were used over a number of years. Dobereiner refused to file a patent for his lighter, commenting that "I love science more than money." Davy thought the action of platinum was the result of heat while Dobereiner believed the ~ffect ~as a manifestation of electricity. Faraday became interested in the subject and published a paper on it in 1834; he concluded that the cause for this reaction was similar to other reactions.

Book Methane Conversion by Oxidative Processes

Download or read book Methane Conversion by Oxidative Processes written by Eduardo E. Wolf and published by Springer. This book was released on 1992 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: A reasonable case could be made that the scientific interest in catalytic oxidation was the basis for the recognition of the phenomenon of catalysis. Davy, in his attempt in 1817 to understand the science associated with the safety lamp he had invented a few years earlier, undertook a series of studies that led him to make the observation that a jet of gas, primarily methane, would cause a platinum wire to continue to glow even though the flame was extinguished and there was no visible flame. Dobereiner reported in 1823 the results of a similar investigation and observed that spongy platina would cause the ignition of a stream of hydrogen in air. Based on this observation Dobereiner invented the first lighter. His lighter employed hydrogen (generated from zinc and sulfuric acid) which passed over finely divided platinum and which ignited the gas. Thousands of these lighters were used over a number of years. Dobereiner refused to file a patent for his lighter, commenting that "I love science more than money." Davy thought the action of platinum was the result of heat while Dobereiner believed the ~ffect ~as a manifestation of electricity. Faraday became interested in the subject and published a paper on it in 1834; he concluded that the cause for this reaction was similar to other reactions.

Book Gas Phase Chain Reactions Catalyzed by Solids

Download or read book Gas Phase Chain Reactions Catalyzed by Solids written by Pieter Maria Couwenberg and published by . This book was released on 1995 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Steady state and Transient Catalytic Oxidation and Coupling of Methane

Download or read book Steady state and Transient Catalytic Oxidation and Coupling of Methane written by and published by . This book was released on 1993 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: Four papers have been published on mechanisms and site requirements for oxidative coupling of methane to ethane and ethylene and on synthesis of thin catalytic films during fiscal 1993. These publications also describe a unique inhibiting effect of water on the rate of undesired full oxidation pathways during oxidative coupling. Five quarterly reports have been written and submitted during the covered period. These findings and recently reported models of surface and gas phase reactions of methane suggest the use of membrane reactors and of cyclic methane decomposition schemes in order to avoid deleterious full oxidation reactions and to increase C2 yields above 25%. In fiscal 1994, we will proceed with the testing of proton-conducting membranes that we have recently fabricated. We will also continue our emerging effort in cyclic decomposition of methane and scavenging of fragments on supported metal catalysts.

Book Catalysis for C1 Chemistry  Oxidative Coupling of Methane Using Nanofiber Catalysts and Discovery of Catalysts for Atmospheric Reduction of CO2 to Methanol

Download or read book Catalysis for C1 Chemistry Oxidative Coupling of Methane Using Nanofiber Catalysts and Discovery of Catalysts for Atmospheric Reduction of CO2 to Methanol written by Bahman Zohour and published by . This book was released on 2017 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this research is to explore novel catalytic material and systems for effective conversion of C1 feed. Catalysis of C1 chemistry is of critical importance for the clean production of fuels and chemicals and future energy sustainability. Herein, two processes were studied: In the first section, a comprehensive study of oxidative coupling of methane (OCM) using novel nanofiber catalysts of mixed metal oxides was undertaken and in the second section, direct catalytic conversion of carbon dioxide (CO2) to methanol was studied, which resulted in discovery of a superior catalytic system for CO2 hydrogenation to methanol. Section 1: Utilization of natural gas as an alternate chemical feedstock to petroleum has been a highly desirable but difficult goal in industrial catalysis. Accordingly, there has been a substantial interest in the oxidative coupling of methane (OCM), which allows for the direct catalytic conversion of methane into economically valuable C2+ hydrocarbons. OCM is a complex reaction process involving heterogeneous catalysis intricately coupled with gas phase reactions; hence, despite decades' worth of research, it has yet to be commercialized. The lack of progress in OCM is primarily due to the following reasons: 1. The absence of a highly active and robust catalyst that can operate at lower temperatures; and 2. Our inadequate understanding of the underlying detailed chemical kinetics mechanism (DCKM) of the OCM process, which impedes the undertaking of quantitative simulations of novel reactor configurations and/or operating strategies. To address these issues, we undertook the following program of studies: 1. Further improved the synthesis of novel nanofiber catalysts by electrospinning, building on the early discovery that La2O3-CeO2 nanofibers were highly active and robust OCM catalysts; 2. Applied our novel microprobe sampling system to OCM reactors for the acquisition of spatially resolved species concentration and temperatures profiles within the catalytic zone. Our novel sampling approach led to the important discovery that H2 is produced very early in the OCM catalytic zone, an observation that was completely missed in all prior studies. The application of our novel microprobe system to a dual-bed OCM reactor also demonstrated the feasibility to significantly improve C2+ product yields to 21% (from 16% for single bed) which we plan to further improve by considering more sequential beds; 3. Outlined development and validation of new generation of DCKM for the OCM process using the high-information content of spatial concentration profiles obtained in part 2. Most importantly, to improve the current DCKM literature by considering surface reactions that result in early H2 formation. Validated DCKM represent highly valuable numerical tools that allow for the prediction of the OCM performance of different reactor configurations operating under a broad range of conditions, e.g. high pressures, porous wall reactors etc. Consequently, this new generation of comprehensive DCKM based on the sampling profiles, detailed in this report, will be of considerable use in improving the yields of useful products in the OCM process; 4. Explore novel conditions that include oxygen-feed distributed packed bed OCM reactors and coupled catalytic and non-thermal plasma OCM reactors, again to further push the yields for useful C2+ products. The details of the proposed approach for implementing such reactor configurations and development of a new generation of DCKM for the OCM process is outlined in the future work, Chapter 4, of section 1 of the report. Section 2: Direct catalytic conversion of carbon dioxide to liquid fuels and basic chemicals, such as methanol, using solar-derived hydrogen at or near ambient pressure is a highly desirable goal in heterogeneous catalysis. When realized, this technology will pave the way for a sustainable society together with decentralized power generation. Here we report a novel class of holmium (Ho) containing multi-metal oxide Cu catalysts discovered through the application of high-throughput methods. In particular, ternary systems of Cu-GaOx-HoOy > Cu-CeOx-HoOy ~ Cu-LaOx-HoOy supported on -Al2O3 exhibited superior methanol production (10x) with less CO formation than previously reported catalysts at atmospheric pressure. Holmium was shown to be highly dispersed as few-atom clusters, suggesting that the formation of tri-metallic sites could be the key for the promotion of methanol synthesis by Ho.

Book Oxidative Coupling of Methane

Download or read book Oxidative Coupling of Methane written by Vinzenz Fleischer and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Cleaner Combustion

Download or read book Cleaner Combustion written by Frédérique Battin-Leclerc and published by Springer Science & Business Media. This book was released on 2013-09-06 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: This overview compiles the on-going research in Europe to enlarge and deepen the understanding of the reaction mechanisms and pathways associated with the combustion of an increased range of fuels. Focus is given to the formation of a large number of hazardous minor pollutants and the inability of current combustion models to predict the formation of minor products such as alkenes, dienes, aromatics, aldehydes and soot nano-particles which have a deleterious impact on both the environment and on human health. Cleaner Combustion describes, at a fundamental level, the reactive chemistry of minor pollutants within extensively validated detailed mechanisms for traditional fuels, but also innovative surrogates, describing the complex chemistry of new environmentally important bio-fuels. Divided into five sections, a broad yet detailed coverage of related research is provided. Beginning with the development of detailed kinetic mechanisms, chapters go on to explore techniques to obtain reliable experimental data, soot and polycyclic aromatic hydrocarbons, mechanism reduction and uncertainty analysis, and elementary reactions. This comprehensive coverage of current research provides a solid foundation for researchers, managers, policy makers and industry operators working in or developing this innovative and globally relevant field.

Book Methane Conversion

Download or read book Methane Conversion written by D.M. Bibby and published by Elsevier. This book was released on 1988-03-01 with total page 759 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume comprises the invited plenary lectures, contributed and poster papers presented at a symposium organised to mark the successful inauguration of the world's first commercial plant for production of gasoline from natural gas, based on the Mobil methanol-to-gasoline process. The objectives of the Symposium were to present both fundamental research and engineering aspects of the development and commercialization of gas-to-gasoline processes. These include steam reforming, methanol synthesis and methanol-to-gasoline. Possible alternative processes e.g. MOGD, Fischer-Tropsch synthesis of hydrocarbons, and the direct conversion of methane to higher hydrocarbons were also considered.The papers in this volume provide a valuable and extremely wide-ranging overview of current research into the various options for natural gas conversion, giving a detailed description of the gas-to-gasoline process and plant. Together, they represent a unique combination of fundamental surface chemistry catalyst characterization, reaction chemistry and engineering scale-up and commercialization.

Book Catalytic Partial Oxidation of Methane at High Flowrates

Download or read book Catalytic Partial Oxidation of Methane at High Flowrates written by Keith Lawrence Hohn and published by . This book was released on 1999 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

Download or read book OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS written by and published by . This book was released on 1998 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C2 hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO(subscript x) products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

Book Mechanistic Studies on the Oxidative Coupling of Methane

Download or read book Mechanistic Studies on the Oxidative Coupling of Methane written by Chunlei Shi and published by . This book was released on 1993 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Natural Gas Conversion

Download or read book Natural Gas Conversion written by A. Holmen and published by Elsevier. This book was released on 1991-05-27 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings reflect the extensive fundamental and applied research efforts that are currently being made on the conversion of gas, in particular on the direct conversion of methane. The Symposium in Oslo focused on the following topics: Direct conversion of methane, Fischer-Tropsch chemistry, methanol conversion and natural gas conversion processes. The main aim was to present the state-of-the-art and progress currently being made within each of these areas. The book contains the papers presented and includes plenary lectures, short communications and posters. The papers will be of interest to scientists and engineers working in the field of gas conversion, transportation fuels, primary petrochemicals and catalysis.

Book Catalysis

    Book Details:
  • Author : James J. Spivey
  • Publisher : Royal Society of Chemistry
  • Release : 1993
  • ISBN : 085186614X
  • Pages : 191 pages

Download or read book Catalysis written by James J. Spivey and published by Royal Society of Chemistry. This book was released on 1993 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is an increasing challenge for chemical industry and research institutions to find cost-efficient and environmentally sound methods of converting natural resources into fuels chemicals and energy. Catalysts are essential to these processes and the Catalysis Specialist Periodical Report series serves to highlight major developments in this area. This series provides systematic and detailed reviews of topics of interest to scientists and engineers in the catalysis field. The coverage includes all major areas of heterogeneous and homogeneous catalysis and also specific applications of catalysis such as NOx control kinetics and experimental techniques such as microcalorimetry. Each chapter is compiled by recognised experts within their specialist fields and provides a summary of the current literature. This series will be of interest to all those in academia and industry who need an up-to-date critical analysis and summary of catalysis research and applications. Catalysis will be of interest to anyone working in academia and industry that needs an up-to-date critical analysis and summary of catalysis research and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr

Book Catalysis and the Mechanism of Methane Conversion to Chemicals

Download or read book Catalysis and the Mechanism of Methane Conversion to Chemicals written by Toshihide Baba and published by Springer Nature. This book was released on 2020-04-18 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces various types of reactions to produce chemicals by the direct conversion of methane from the point of view of mechanistic and functional aspects. The chemicals produced from methane are aliphatic and aromatic hydrocarbons such as propylene and benzene, and methanol. These chemicals are created by using homogeneous catalysts, heterogeneous catalysts such as zeolites, and biocatalysts such as enzymes. Various examples of methane conversion reactions that are discussed have been chosen to illustrate how heterogeneous and homogenous catalysts and biocatalysts and/or their reaction environments control the formation of highly energetic species from methane contributing to C-C and C-O bond formation.

Book Natural Gas Conversion II

Download or read book Natural Gas Conversion II written by H.E. Curry-Hyde and published by Elsevier. This book was released on 1994-07-15 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Symposium provided the opportunity to review progress after more than 10 years of research and development in the field of natural gas conversion. Oxidative coupling of methane as a route to higher value fuels or feedstock was a major part of the program. The advances in understanding of reaction mechanisms and catalyst structure were discussed in a Plenary paper and in many of the contributed papers. The homogeneous gas phase chemistry involved in methane oxidation is relevant not only to oxidative coupling but also to synthesis gas and methanol production via partial oxidation. This field is reviewed in a Plenary paper and contributed papers describe developments in catalysts and technology for partial oxidation to synthesis gas and to methanol. An alternative route to synthesis gas from methane currently receiving attention is carbon dioxide reforming. This technology is reviewed in a Plenary paper and recent advances are described in contributed papers. The first detailed account of the Shell SMDS Fischer-Tropsch process for production of transport fuels from natural gas recently commercialised in Malaysia is given in this book. Papers discuss structural aspects of Fischer-Tropsch catalysts, modifications of Fischer-Tropsch catalysts to produce light olefins, and the possibilities of operating a Fischer-Tropsch process off-shore. Methanol as an intermediate in natural gas conversion continues to attract attention, and methanol synthesis and conversion are discussed in contributed papers. The possibilities of finding new uses for methane are treated in a Plenary paper and arguments for using methane as a fuel rather than a feedstock are also presented. Among the new uses of methane considered are the generation of electricity in fuel cells and the use of methane as a reductant for NOx emissions. The papers will be of interest to scientists and engineers working in the field of gas conversion, transportation fuels, primary petrochemicals and catalysis.