EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Palladium Catalyzed Oxidation of Hydrocarbons

Download or read book Palladium Catalyzed Oxidation of Hydrocarbons written by P. Henry and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of organometallic chemistry has emerged over the last twenty-five years or so to become one of the most important areas of chemistry, and there are no signs of abatement in the intense current interest in the subject, particularly in terms of its proven and potential application in catalytic reactions involving hydrocarbons. The development of the organometallic/ catalysis area has resulted in no small way from many contributions from researchers investigating palladium systems. Even to the well-initiated, there seems a bewildering and diverse variety of organic reactions that are promoted by palladium(II) salts and complexes. Such homogeneous reactions include oxidative and nonoxidative coupling of substrates such as olefins, dienes, acetylenes, and aromatics; and various isomerization, disproportionation, hydrogenation, dehydrogenation, car bonylation and decarbonylation reactions, as well as reactions involving formation of bonds between carbon and halogen, nitrogen, sulfur, and silicon. The books by Peter M. Maitlis - The Organic Chemistry of Palladium, Volumes I, II, Academic Press, 1971 - serve to classify and identify the wide variety of reactions, and access to the vast literature is available through these volumes and more recent reviews, including those of J. Tsuji [Accounts Chem. Res. , 6, 8 (1973); Adv. in Organometal. , 17, 141 (1979)], R. F. Heck [Adv. in Catat. , 26, 323 (1977)], and ones by Henry [Accounts Chem. Res. , 6, 16 (1973); Adv. in Organometal. , 13, 363 (1975)]. F. R. Hartley's book - The Chemistry of Platinum and Palladium, App!. Sci. Pub!.

Book Catalytic Reactions

    Book Details:
  • Author : Peter Maitlis
  • Publisher : Elsevier
  • Release : 2012-12-02
  • ISBN : 0323159613
  • Pages : 233 pages

Download or read book Catalytic Reactions written by Peter Maitlis and published by Elsevier. This book was released on 2012-12-02 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Organic Chemistry of Palladium, Volume I1: Catalytic Reactions deals with organic transformations resulting from palladium complexes either stoichiometrically or catalytically. One feature of a reaction catalyzed by transition metals is the absence of evidence for the typical reactive intermediates of organic chemistry, carbanions, and carbonium ions. This lack of evidence is due to the metal acting both as a source and a sink of electrons that result in energetically unfavorable ionic intermediaries. The book explains that palladium (II) can induce C-O bond formation. These reactions involve oxidation of the organic substrate and reduces the Pd(II) to metal, and are not catalytic. Industrial applications can re-oxidize the palladium metal back to Pd(II) in situ, making the reactions catalytic. The text also discusses certain reactions that can form C-O bonds as part of an oxidative process. The book also describes significant reactions that can be catalyzed by palladium metal, such as in the hydrogenation of multiple bonds, in the carbonylation of certain olefins and acetylenes, and in the catalytic cracking of high molecular weight hydrocarbons. Organic chemists, analytical chemists, investigators, and scientists whose works involve physical or inorganic chemistry will find the book truly useful.

Book The Stereochemistry of Carbonylation of Some Diene palladium  II  Complexes

Download or read book The Stereochemistry of Carbonylation of Some Diene palladium II Complexes written by Leon Francis Hines and published by . This book was released on 1971 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Palladium Catalyzed Coupling Reactions

Download or read book Palladium Catalyzed Coupling Reactions written by Árpád Molnár and published by John Wiley & Sons. This book was released on 2013-02-14 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook and ready reference brings together all significant issues of practical importance in selected topics discussing recent significant achievements for interested readers in one single volume. While covering homogeneous and heterogeneous catalysis, the text is unique in focusing on such important aspects as using different reaction media, microwave techniques or catalyst recycling. It also provides a comprehensive treatment of key issues of modern-day coupling reactions having emerged and matured in recent years and emphasizes those topics that show potential for future development, such as continuous flow systems, water as a reaction medium, and catalyst immobilization, among others. With its inclusion of large-scale applications in the pharmaceutical industry, this will equally be of great interest to industrial chemists. From the contents * Palladium-Catalyzed Cross-Coupling Reactions - A General Introduction * High-turnover Heterogeneous Palladium Catalysts in Coupling Reactions: the Case of Pd Loaded on Dealuminated Y Zeolites Palladium-Catalyzed Coupling Reactions with Magnetically Separable Nanocatalysts * The Use of Ordered Porous Solids as Support Materials in Palladium-Catalyzed Cross-Coupling Reactions * Coupling Reactions Induced by Polymer-Supported Catalysts * Coupling Reactions in Ionic Liquids * Cross-Coupling Reactions in Aqueous Media * Microwave-Assisted Synthesis in C-C and C-Heteroatom Coupling Reactions * Catalyst Recycling in Palladium-Catalyzed Carbon-Carbon Coupling Reactions * Nature of the True Catalytic Species in Carbon-Carbon Coupling Reactions with * Heterogeneous Palladium Precatalysts * Coupling Reactions in Continuous Flow Systems * Large-Scale Applications of Palladium-Catalyzed Couplings in the Pharmaceutical Industry

Book Reactions of Conjugated Dienes with Palladium  II  Complexes

Download or read book Reactions of Conjugated Dienes with Palladium II Complexes written by Richard Vance Lawrence and published by . This book was released on 1975 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book American Doctoral Dissertations

Download or read book American Doctoral Dissertations written by and published by . This book was released on 1980 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Palladium catalyzed Carbonylation of Unsaturated Carbon carbon Bonds

Download or read book Palladium catalyzed Carbonylation of Unsaturated Carbon carbon Bonds written by Ji Yang and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis is mainly concerned with the carbonylative functionalization of unsaturated organic substrates in the presence of homogeneous catalysts. More specifically, oxidative carbonylation of alkynes, alkoxycarbonylation of 1,3-dienes and platinum-catalyzed alkoxycarbonylation of olefins are presented. The resulting esters, maleimides and adipic acid diesters constitute important intermediates for both organic synthesis and chemical industry. Regarding methodology developments, firstly a catalytic oxidative carbonylation reaction with air as a green oxidant was developed.eng

Book Mechanistic Studies on the Reactions of Dienes and Palladium II  Complexes

Download or read book Mechanistic Studies on the Reactions of Dienes and Palladium II Complexes written by H. M. Asfour and published by . This book was released on 1984 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book New Palladium Catalyzed Carbonylative Approaches to Heterocycle and Acid Chloride Synthesis

Download or read book New Palladium Catalyzed Carbonylative Approaches to Heterocycle and Acid Chloride Synthesis written by Gerardo Martin Torres and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "Metal catalyzed carbonylation reactions are heavily exploited in synthetic chemistry. These include not only high volume industrial reactions, but also a plethora of catalytic small molecule syntheses. This thesis will describe our efforts to develop such reactions. In these, palladium catalyzed carbonylations are exploited to build-up reactive products such as acid chlorides or carbonyl-containing 1,3-dipoles. Coupling this with the ability of the products undergo other spontaneous reactions can offer new routes to build up products from combinations of available reagents or be used to expand the scope of carbonylation chemistry. In chapter 2, we describe how the palladium catalyzed carbonylation of aryl iodides in the presence of imines can allow the overall generation of a 1,3-dipole: a Münchnone. A variety of mechanistic studies were performed on this reaction and show that it proceeds via a tandem catalytic process: the first involving the Pd catalyzed coupling of aryl iodides with carbon monoxide and a chloride salt to form an acid chloride, which can react with an imine and then undergo a second spontaneous cyclocarbonylation to afford the product. Coupling their formation with alkyne cycloaddition can be used to develop a novel method to assemble broad families of pyrroles from aryl iodides, imines, carbon monoxide and alkynes. In Chapter 3 we develop a strategy to apply our palladium catalyzed carbonylative synthesis of Münchnones to construct more complex pyrrole structures. In this, the combination of alkyne-tethered imines, aryl iodides, and carbon monoxide generates a Münchnone that can undergo intramolecular 1,3-dipolar cycloaddition to generate polycyclic pyrroles. This approach allows the modular and regioselective synthesis of complex pyrrole structures, and is compatible with less activated alkynes. In addition, we show that this reaction can be used in tandem with the palladium catalyzed Sonogashira functionalization of terminal alkynes with aryl iodides.In Chapter 4 we describe our efforts to take advantage of the ketene-like reactivity of Münchnones to generate [beta]-lactams. This transformation occurs via the palladium catalyzed formation of Münchnones from imines, aryl iodides, and carbon monoxide, followed by a cycloaddition to a second equivalent of imine to afford amide substituted [beta]-lactam products. Moreover, applying the conditions described in Chapter 2 for the synthesis of Münchnones allowed us to construct more diversely substituted [beta]-lactams by reacting the Münchnone with a different imine. Alternatively, the palladium catalyzed carbonylation of imine-tethered aryl iodides leads to the formation of novel spirocyclic [beta]-lactams.The palladium catalyzed synthesis of acid chlorides is a key component to the synthetic approaches to heterocycles presented in Chapters 2-4. However, the specific features that enable the catalyst to mediate the challenging reductive elimination of acid chlorides also inhibit the reverse oxidative addition step. In Chapter 5 we address these limitations by approaching this palladium catalyzed reaction from a different perspective. In this, visible light is used to drive both key steps in palladium catalysis: oxidative addition and reductive elimination. Analogous to other reports, we show that visible light excitation of a Pd complex can drive oxidative addition of a wide variety of aryl and alkyl halides. In addition, we find that visible light can induce a new reaction step the reductive elimination of acid chlorides. The latter occurs via the excitation in this case of the palladium-acyl intermediate. Together, this offers a platform to perform palladium catalyzed carbonylations at ambient temperature, with a wide array of organic halide substrates that have proven to be challenging in traditional palladium catalysis, and form from these acid chloride electrophiles that can allow the use of nucleophiles that are typically incompatible with carbonylations"--

Book Reactions of Diene Complexes of Palladium  II  and Platinum  II

Download or read book Reactions of Diene Complexes of Palladium II and Platinum II written by Joseph Thomas Michalowski and published by . This book was released on 1973 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Development of New Classes of Palladium and Nickel Catalyzed Carbonylation Reactions

Download or read book Development of New Classes of Palladium and Nickel Catalyzed Carbonylation Reactions written by Jevgenijs Tjutrins and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "This thesis describes the development of new palladium and nickel catalyzed carbonylation reactions to efficiently and rapidly generate products with minimal waste. These reactions can be carried out using commercially and/or readily available starting materials, including imines, acid chlorides, aryl iodides, alkynes, alkenes and carbon monoxide. In chapter 2, we describe a palladium catalyzed carbonylative synthesis of polysubstituted imidazoles. This transformation involves a tandem catalytic process, where a single palladium catalyst mediates both the carbonylation of aryl halides to form acid chlorides, as well as cyclocarbonylation of a-chloroamides, to generate 1,3-dipoles. Finally, a regioselective 1,3-dipolar cycloaddition with electron poor imines furnishes tetra-substituted imidazoles. Overall this provides a route to prepare imidazoles from five readily available building blocks: two electronically distinct imines, aryl halides and two molecules of CO. In chapter 3, we describe a nickel catalyzed approach to synthesize of isoindolinones via the carbonylation of aryl iodides in the presence of imines. In this, the nickel catalyzed in situ generation of acid chlorides via aryl halide carbonylation allows the formation of a chloroamides, which in turn undergo an intramolecular cyclization to form isoindolinones. This reaction offers an efficient alternative to traditional syntheses of isoindolinones, which often require the initial assembly of the appropriate aryl-tethered precursors for cyclization. In chapter 4, we describe the development of a palladium catalyzed, electrophilic approach to the carbonylative C-H bond functionalization of a range of heterocycles. Mechanistic studies show that the Pd/PtBu3 catalyst can mediate the in situ formation of highly electrophilic aroyl iodide intermediates, which react with heterocycles forming aryl-(hetero)aryl ketones. This provides a general methodology to construct ketones from aryl iodides and electron rich heterocycles without the need to prefunctionalize the heterocycle, install directing groups, or exploit high energy starting materials (e.g. acid chlorides). Chapter 5 describes mechanistic studies on the palladium catalyzed multicomponent synthesis of 1,3-oxazolium-5-olates (Münchnones). Previous work in our laboratory has shown that Münchnones can be generated via the palladium catalyzed multicomponent coupling of acid chlorides, imines and CO. In order to better understand this reaction, we synthesized and characterized key reactive intermediates, studied stoichiometric model reactions, and performed kinetic studies on catalytic reaction. These allowed the elucidation of the role of the catalyst structure, rate determining steps, as well as the importance of off cycle steps in this transformation. In chapter 6, we show how the mechanistic insights laid out in the previous chapter can be applied to create a highly active catalytic system for synthesis of 1,3-oxazolium-5-olates. By employing a sterically encumbered pyrrole-based phosphine ligand, which can be more easily displaced by carbon monoxide for carbonylation, we have created a catalyst that is more than ten times more active that previous systems for this reaction. When coupled with alkyne cycloaddition, this offers a broadly generalizable route to form polysubstituted pyrroles from simple imines, acid chlorides and alkynes. This approach has been applied to the multicomponent synthesis of Atorvastatin (i.e., Lipitor). " --

Book Palladium Catalyzed Oxidative Couplings and Applications to the Synthesis of Macrocycles and Strained Cyclic Dienes

Download or read book Palladium Catalyzed Oxidative Couplings and Applications to the Synthesis of Macrocycles and Strained Cyclic Dienes written by Byron Boon and published by . This book was released on 2017 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: The palladium(II)-catalyzed oxidative macrocyclization of bis(vinylboronate esters) is demonstrated as an efficient method for the synthesis of macrocyclic dienes. The macrocyclization reactions feature mild conditions due to a palladium(II) catalytic cycle which obviates the need for a high energy oxidative addition step of standard palladium(0) catalytic cycles. Instead, this oxidative coupling is promoted by chloroacetone as a terminal re-oxidant in the catalytic cycle. An extension of the oxidative coupling/macrocyclization strategy is highlighted where molecular oxygen may be used in place of chloroacetone as the terminal re-oxidant. Homocoupling reactions of vinylboronate esters served as a template to screen reaction conditions for this method. From these experiments, multiple reaction conditions gave the oxidative homocoupling product in high yield. These reaction conditions were successfully applied to the oxidative macrocyclization of a bis(vinylboronate ester) using molecular oxygen as a re-oxidant. Syntheses of strained cyclic dienes were accomplished via the palladium(II)-catalyzed oxidative cyclizations of terminal bis(vinylboronate esters). The reactions generated strained (E,E)-1,3-dienes that underwent spontaneous 4 -electrocyclizations to form bicyclic cyclobutenes. Formation of the cyclobutenes is driven by strain in the medium-ring (E,E)-1,3-diene intermediates. Thermal ring openings of the cyclobutenes give (Z,Z)-1,3-diene products, again for thermodynamic reasons. These results are in contrast with typical acyclic trans-3,4-dialkyl cyclobutenes, which favor outward torquoselective ring-openings to give (E,E)-1,3-dienes. DFT calculations verified the thermodynamic versus kinetic control of the reactions and kinetic studies are in excellent agreement with the calculated energy changes. Investigations on the transannular Pauson-Khand reaction are also highlighted. The Pauson-Khand reaction is a powerful tool for the synthesis of cyclopentenones through the efficient [2+2+1] cycloaddition of dicobalt alkyne complexes with alkenes. While intermolecular and intramolecular variants are widely known, transannular versions of this reaction are unknown and the basis of this study. Our successful transannular Pauson-Khand reaction required a cyclic enyne incorporating one short three-membered linker chain and a rigid aryl linker in the backbone of the long linker chain. This rigidity of the aryl linker is proposed to facilitate the transannular [2+2+1] cyclization. Computational studies revealed that transannular Pauson-Khand reactions are thermodynamically favored for cyclic enynes featuring a long linker of at least 5 carbons, but with smaller chains the reactions are thermodynamically disfavored. Experimental studies show that long linking chains with more than 5 members are required to prevent to steric interactions between the dicobalt hexacarbonyl moiety and the linking chain to allow the reaction to be kinetically favored. The final part of this work highlights progress towards the total synthesis of (+)-kingianin A. This natural product was isolated as a racemic mixture from the bark of Endiandra kingiana and is an inhibitor of antiapoptotic protein Bcl-Xl, highlighting its potential use in cancer treatments. Its structure is proposed to arise from an intermolecular Diels-Alder dimerization reaction of bicyclo[4.2.0]octadiene fragments derived from an 8 /6 -electrocyclization cascade. Although two total syntheses of (i )-kingianin A have been reported, an enantioselective synthesis has not been achieved and is the purpose of this study. This synthetic route begins from L-(+)-dimethyl tartrate, a cheap and commercially available starting material, and aims to follow a biomimetic synthetic pathway featuring a substrate controlled diastereoselective palladium(II)-catalyzed oxidative cyclization and 8 /6 -electrocyclization cascade. Although the feasibility of this cascade pathway has not yet been realized, key synthetic transformations to install the requisite carbocyclic framework of (+)-kingianin A have been discovered, paving the way for future investigations on the palladium(II)-catalyzed coupling/electrocyclization cascade and completion of the synthesis.

Book Selective Palladium II  Promoted Nucleophilic Addition to Dienes

Download or read book Selective Palladium II Promoted Nucleophilic Addition to Dienes written by and published by . This book was released on 1987 with total page 53 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Palladium II  catalyzed 1 4 oxidations of 1 3 dienes

Download or read book Palladium II catalyzed 1 4 oxidations of 1 3 dienes written by Andreas Palmgren and published by Uppsala Universitet. This book was released on 1999 with total page 55 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Palladium Catacyzed Carbonylative Approaches to Acyl Electrophiles Using Ligand Effects Or Visible Light

Download or read book Palladium Catacyzed Carbonylative Approaches to Acyl Electrophiles Using Ligand Effects Or Visible Light written by Yi Liu and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "Transition metal catalyzed carbonylation reactions have been broadly exploited for the synthesis of carbonyl-containing products. A versatile version of these are palladium-catalyzed carbonylative coupling reactions of organic halides and nucleophiles. However, one drawback to this chemistry is the low electrophilic reactivity of the palladium-acyl intermediates in reaction, which severely limits the scope of nucleophiles that can be employed in carbonylations. This thesis describes studies to address this challenge by the formation of potent acyl electrophiles via metal-catalyzed carbonylations, and their use with non-classical carbonylation nucleophiles. In chapter 2, we demonstrate how the correctly ligated palladium catalyst can be used to create potent acyl-pyridinium electrophiles via the carbonylation of aryl or vinyl triflates, and use these for in situ (hetero)arene C-H bond functionalization. The reaction was catalyzed by a Xantphos-coordinated palladium catalyst, and the bidentate and large-bite-angle ligand is believed to balance the activation of the strong C(sp2)-OTf bonds with the reductive elimination of reactive N-acyl-pyridinium electrophiles. The pyridine employed not only leads to the formation of the acyl-pyridinium salt electrophile, but its structure can be used to modulate selectivity in arene C-H functionalization. Overall, this offers a carbonylative method to form diaryl ketones, [alpha],[beta]-unsaturated ketones, and polycyclic ketones using a broad range of aryl- or vinyl- triflates and (hetero)arenes. Chapter 3 describes an extension of the work in chapter 2, where simple lithium chloride rather than the specialized trifluoromethyl- or methoxy-substituted pyridine can be used as the additive for the palladium catalyzed carbonylative coupling of aryl or vinyl triflates and heteroarenes to form ketones. Mechanistic studies suggest the reaction proceeds by the catalytic generation of acid chloride electrophiles for functionalization of electron-rich heterocycles.A limitation to the carbonylative generation of acyl electrophiles noted above is the need to use aryl- or vinyl-(pseudo)halides as reagents. The association of carbon monoxide to the catalyst severely inhibits oxidative addition reactions, and blocks the use of less reactive substrates such as alkyl halides. In chapter 4, we design a strategy to address these challenges using visible light excitation of palladium. This has opened an approach to perform the carbonylation of diverse array of aryl- and even alkyl-halides and from these build-up acid chlorides with the ability to reaction with various nucleophiles. Mechanistic studies suggest the reaction proceeds via a unique combination of photoevents, where the photoexcitation of Pd(0) induces electron transfer with the organic halide to favor oxidative addition, while the photoexcitation of the Pd(II) intermediate leads to Pd-acyl bond scission and the ultimate reductive elimination of acid chloride electrophiles. While the results in chapter 4 expand the variety of products available from carbonylation, the formation of acid chlorides as reaction products (rather than intermediates) is usually not possible. The latter can be attributed to the high reactivity of acid chlorides, which can lead to their rapid re-addition to the palladium catalyst and either inhibit the reaction or lead to their slow decomposition. In chapter 5, we developed a method to address these limits via the synthesis of less easily reduced acyl fluorides. In this case, mechanistic studies suggest visible light favored oxidative addition to Pd(0) is coupled with rapid ligand driven reductive elimination of the acyl fluoride product, which does not re-add to the Pd(0) once formed. By driving these two reverse steps with different inputs, this has offered a general platform to access acyl fluoride electrophiles, and from these synthesize complex, highly functionalized carbonyl-containing products"--