Download or read book Interface Engineering of Capacitive Micromachined Ultrasonic Transducers for Medical Applications written by Der-Song Lin and published by Stanford University. This book was released on 2011 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Capacitive micromachined ultrasonic transducers (CMUTs), have been widely studied in academia and industry over the last decade. CMUTs provide many benefits over traditional piezoelectric transducers including improvement in performance through wide bandwidth, and ease of electronics integration, with the potential to batch fabricate very large 2D arrays with low-cost and high-yield. Though many aspects of CMUT technology have been studied over the years, packaging the CMUT into a fully practical system has not been thoroughly explored. Two important interfaces of packaging that this thesis explores are device encapsulation (the interface between CMUTs and patients) and full electronic integration of large scale 2D arrays (the interface between CMUTs and electronics). In the first part of the work, I investigate the requirements for the CMUT encapsulation. For medical usage, encapsulation is needed to electrically insulate the device, mechanically protect the device, and maintain transducer performance, especially the access of the ultrasound energy. While hermetic sealing can protect many other MEMS devices, CMUTs require mechanical interaction to a fluid, which makes fulfilling the previous criterion very challenging. The proposed solution is to use a viscoelastic material with the glass-transition-temperature lower than room temperature, such as Polydimethylsiloxane (PDMS), to preserve the CMUT static and dynamic performance. Experimental implementation of the encapsulated imaging CMUT arrays shows the device performance was maintained; 95 % of efficiency, 85% of the maximum output pressure, and 91% of the fractional bandwidth (FBW) can be preserved. A viscoelastic finite element model was also developed and shows the performance effects of the coating can be accurately predicted. Four designs, providing acoustic crosstalk suppression, flexible substrate, lens focusing, and blood flow monitoring using PDMS layer were also demonstrated. The second part of the work, presents contributions towards the electronic integration and packaging of large-area 2-D arrays. A very large 2D array is appealing for it can enable advanced novel imaging applications, such as a reconfigurable array, and a compression plate for breast cancer screening. With these goals in mind, I developed the first large-scale fully populated and integrated 2D CMUTs array with 32 by 192 elements. In this study, I demonstrate a flexible and reliable integration approach by successfully combining a simple UBM preparation technique and a CMUTs-interposer-ASICs sandwich design. The results show high shear strength of the UBM (26.5 g), 100% yield of the interconnections, and excellent CMUT resonance uniformity ([lowercase Sigma] = 0.02 MHz). As demonstrated, this allows for a large-scale assembly of a tile-able array by using an interposer. Interface engineering is crucial towards the development of CMUTs into a practical ultrasound system. With the advances in encapsulation technique with a viscoelastic polymer and the combination of the UBM technique to the TSV fabrication for electronics integration, a fully integrated CMUT system can be realized.
Download or read book Mems for Biomedical Applications written by Shekhar Bhansali and published by Elsevier. This book was released on 2012-07-18 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology.The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chip devices. MEMS for tissue engineering and clinical applications are the focus of part three, which considers cell culture and tissue scaffolding devices, BioMEMS for drug delivery and minimally invasive medical procedures. Finally, part four reviews emerging biomedical applications of MEMS, from implantable neuroprobes and ocular implants to cellular microinjection and hybrid MEMS.With its distinguished editors and international team of expert contributors, MEMS for biomedical applications provides an authoritative review for scientists and manufacturers involved in the design and development of medical devices as well as clinicians using this important technology. - Reviews the wealth of recent research on fabrication technologies and applications of Micro Electro Mechanical Systems (MEMS) in the biomedical field - Introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms - Considers MEMS for biomedical sensing and diagnostic applications, along with MEMS for in vivo sensing and electrical impedance spectroscopy
Download or read book Diagnostic Ultrasound Imaging Inside Out written by Thomas L. Szabo and published by Academic Press. This book was released on 2013-12-05 with total page 829 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diagnostic Ultrasound Imaging provides a unified description of the physical principles of ultrasound imaging, signal processing, systems and measurements. This comprehensive reference is a core resource for both graduate students and engineers in medical ultrasound research and design. With continuing rapid technological development of ultrasound in medical diagnosis, it is a critical subject for biomedical engineers, clinical and healthcare engineers and practitioners, medical physicists, and related professionals in the fields of signal and image processing. The book contains 17 new and updated chapters covering the fundamentals and latest advances in the area, and includes four appendices, 450 figures (60 available in color on the companion website), and almost 1,500 references. In addition to the continual influx of readers entering the field of ultrasound worldwide who need the broad grounding in the core technologies of ultrasound, this book provides those already working in these areas with clear and comprehensive expositions of these key new topics as well as introductions to state-of-the-art innovations in this field. - Enables practicing engineers, students and clinical professionals to understand the essential physics and signal processing techniques behind modern imaging systems as well as introducing the latest developments that will shape medical ultrasound in the future - Suitable for both newcomers and experienced readers, the practical, progressively organized applied approach is supported by hands-on MATLAB® code and worked examples that enable readers to understand the principles underlying diagnostic and therapeutic ultrasound - Covers the new important developments in the use of medical ultrasound: elastography and high-intensity therapeutic ultrasound. Many new developments are comprehensively reviewed and explained, including aberration correction, acoustic measurements, acoustic radiation force imaging, alternate imaging architectures, bioeffects: diagnostic to therapeutic, Fourier transform imaging, multimode imaging, plane wave compounding, research platforms, synthetic aperture, vector Doppler, transient shear wave elastography, ultrafast imaging and Doppler, functional ultrasound and viscoelastic models
Download or read book Advances in Bioengineering Research and Application 2011 Edition written by and published by ScholarlyEditions. This book was released on 2012-01-09 with total page 872 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Bioengineering Research and Application: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Bioengineering. The editors have built Advances in Bioengineering Research and Application: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Bioengineering in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Bioengineering Research and Application: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Download or read book Therapeutic Ultrasound written by Jean-Michel Escoffre and published by Springer. This book was released on 2015-10-20 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights advances and prospects of a highly versatile and dynamic research field: Therapeutic ultrasound. Leading experts in the field describe a wide range of topics related to the development of therapeutic ultrasound (i.e., high intensity focused ultrasound, microbubble-assisted ultrasound drug delivery, low intensity pulsed ultrasound, ultrasound-sensitive nanocarriers), ranging from the biophysical concepts (i.e., tissue ablation, drug and gene delivery, neuromodulation) to therapeutic applications (i.e., chemotherapy, sonodynamic therapy, sonothrombolysis, immunotherapy, lithotripsy, vaccination). This book is an indispensable source of information for students, researchers and clinicians dealing with non-invasive image-guided ultrasound-based therapeutic interventions in the fields of oncology, neurology, cardiology and nephrology.
Download or read book Image guided Focused Ultrasound Therapy written by Feng Wu and published by CRC Press. This book was released on 2024-07-31 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultrasound has been widely used in diagnostic imaging for a long time. In the past 10 years, image-guided focused ultrasound therapy has seen rapid growth, in biomedical science and engineering, and in clinical medicine. The purpose of this book is to bring internationally renowned authorities and experts in this field together to provide up-to-date and comprehensive reviews of basic physics, biomedical engineering, and clinical applications of focused ultrasound therapy in a widely accessible fashion. Focusing on applications in cancer treatment, this book covers basic principles, practical aspects, and clinical applications of focused ultrasound therapy. It reviews the medical physics and bio-effects of focused ultrasound beams on living tissues, dosimetric methods and measurements, transducer engineering, image guidance and monitoring (including magnetic resonance imaging -- MRI -- and ultrasound), treatment delivery systems, and clinical applications. The book also gives practical guidelines on patient setup, target localisation, treatment planning and image-guided procedures for the treatment in various sites, including the prostate, liver, pancreas, breast, kidney, uterus, bone, and brain. The book discusses major challenges for the use of focused ultrasound energy on living tissues and explores the cellular and physiological responses that can be employed in the fight against cancer from biological, physics and engineering perspectives. It also highlights recent advances, including the treatment of solid tumours using image-guided drug delivery, and the exploitation of microbubbles, nanoparticles, and other cutting-edge techniques. Readers who are interested in learning more about the technique and the clinical applications described in each chapter can find more information in the comprehensive bibliographies provided. This book is suitable for anyone involved in, or looking to become involved in, the research and clinical applications of focused ultrasound therapy, including medical professionals, physicists, biomedical engineers, graduate students and others working in this multidisciplinary field. It offers a balanced and critical assessment of state-of-the-art technologies, major challenges, and an outlook on the future of focused ultrasound therapy. It presents a thorough introduction for those new to the field while providing helpful, up-to-date information and guidelines for readers already using this therapy in clinical and pre-clinical settings. Key Features: Brings together a wide range of world-leading experts in this new field, presenting the latest clinical outcomes of using focused ultrasound for the treatment of benign and malignant diseases Covers the fundamental physics of focused ultrasound therapy and ultrasound-mediated drug delivery, including chapters on the mechanism of sonoporation, microbubble and ultrasound interaction, and their potential clinical applications Introduces clinical guidelines for focused ultrasound therapy, including indications and contraindications, treatment goals, the selection of patients, clinical observation during treatment procedure and follow-up, and characteristics of image changes after treatment
Download or read book Therapeutic Ultrasound written by Gregory T. Clement and published by American Institute of Physics. This book was released on 2006-06-05 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boston, Massachusetts, 27-29 October 2005
Download or read book Physics of Thermal Therapy written by Eduardo Moros and published by Taylor & Francis. This book was released on 2016-04-19 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of thermal therapy has been growing tenaciously in the last few decades. The application of heat to living tissues, from mild hyperthermia to high-temperature thermal ablation, has produced a host of well-documented genetic, cellular, and physiological responses that are being researched intensely for medical applications, particularly fo
Download or read book Non standard Antennas written by François Le Chevalier and published by John Wiley & Sons. This book was released on 2013-01-09 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at describing the wide variety of new technologies and concepts of non-standard antenna systems – reconfigurable, integrated, terahertz, deformable, ultra-wideband, using metamaterials, or MEMS, etc, and how they open the way to a wide range of applications, from personal security and communications to multifunction radars and towed sonars, or satellite navigation systems, with space-time diversity on transmit and receive. A reference book for designers in this lively scientific community linking antenna experts and signal processing engineers.
Download or read book MEMS Technology for Biomedical Imaging Applications written by Qifa Zhou and published by MDPI. This book was released on 2019-10-23 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community.
Download or read book Sensors and Microsystems written by G. Di Francia and published by Springer Nature. This book was released on 2020-02-21 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book showcases the state of the art in the field of sensors and microsystems, revealing the impressive potential of novel methodologies and technologies. It covers a broad range of aspects, including: bio-, physical and chemical sensors; actuators; micro- and nano-structured materials; mechanisms of interaction and signal transduction; polymers and biomaterials; sensor electronics and instrumentation; analytical microsystems, recognition systems and signal analysis; and sensor networks, as well as manufacturing technologies, environmental, food and biomedical applications. The book gathers a selection of papers presented at the 20th AISEM National Conference on Sensors and Microsystems, held in Naples, Italy in February 2019, the event brought together researchers, end users, technology teams and policy makers.
Download or read book 8th International Symposium on Therapeutic Ultrasound written by Emad S. Ebbini and published by American Inst. of Physics. This book was released on 2009-05-13 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings offer a comprehensive view of the state-of-the-art of Therapeutic Ultrasound from the basic science to device technology to clinical practice. Papers describing new therapies of cancer and other tissue abnormalities using innovative device concepts are included. In particular, advanced transducer technologies for noninvasive or minimally invasive delivery of therapeutic ultrasound under image guidance are described by a significant number of papers within the proceedings. The proceedings also include papers on the use of ultrasound in enhancing drug delivery with and without the use of ultrasound contrast agents. In addition, standards and quality assurance issues are addressed by a number of papers. Finally, clinical and pre-clinical in vivo studies are also described.
Download or read book Microstereolithography and Other Fabrication Techniques for 3D MEMS written by Vijay K. Varadan and published by John Wiley & Sons. This book was released on 2001-03-30 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This timely and accessible book focusses on microstereolithography and other microfabrication for 3D MEMS. The application of MEMS (micro-electro-mechanical systems) in such diverse fields as intelligent microsensors, data storage, biomedical engineering and wireless communications is booming, but although many MEMS books are available, this book is unique in that most others deal with 2D MEMS. This volume discusses the fundamental principles of microstereolithography for fabrication of 3D MEMS devices, providing an account of recent developments in related microfabrication and combined architecture techniques, and illustrating their application in the engineering and medical fields. It provides: * A unique and accessible overview of micro-system manufacture using the latest semiconductor processing techniques * Coverage of the developmental history of MEMS, micro-sensors, actuators and signal processing units * Insight to a range of microfabrication techniques from laser ablation to x-ray lithography, silicon micro-machining and micro-moulding * Describes the latest fabrication prototypes and applications, including thin-film transistors, antennas, wireless telemetry systems and transducers This book will appeal to microelectronics engineers, as well as material technologists, and physicists working in industrial and academic research and development.
Download or read book Ultrasound Elastography for Biomedical Applications and Medicine written by Ivan Z. Nenadic and published by John Wiley & Sons. This book was released on 2019-01-22 with total page 613 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultrasound Elastography for Biomedical Applications and Medicine Ivan Z. Nenadic, Matthew W. Urban, James F. Greenleaf, Mayo Clinic Ultrasound Research Laboratory, Mayo Clinic College of Medicine, USA Jean-Luc Gennisson, Miguel Bernal, Mickael Tanter, Institut Langevin – Ondes et Images, ESPCI ParisTech CNRS, France Covers all major developments and techniques of Ultrasound Elastography and biomedical applications The field of ultrasound elastography has developed various techniques with the potential to diagnose and track the progression of diseases such as breast and thyroid cancer, liver and kidney fibrosis, congestive heart failure, and atherosclerosis. Having emerged in the last decade, ultrasound elastography is a medical imaging modality that can noninvasively measure and map the elastic and viscous properties of soft tissues. Ultrasound Elastography for Biomedical Applications and Medicine covers the basic physics of ultrasound wave propagation and the interaction of ultrasound with various media. The book introduces tissue elastography, covers the history of the field, details the various methods that have been developed by research groups across the world, and describes its novel applications, particularly in shear wave elastography. Key features: Covers all major developments and techniques of ultrasound elastography and biomedical applications. Contributions from the pioneers of the field secure the most complete coverage of ultrasound elastography available. The book is essential reading for researchers and engineers working in ultrasound and elastography, as well as biomedical engineering students and those working in the field of biomechanics.
Download or read book Piezoelectric and Acoustic Materials for Transducer Applications written by Ahmad Safari and published by Springer Science & Business Media. This book was released on 2008-09-11 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book discusses the underlying physical principles of piezoelectric materials, important properties of ferroelectric/piezoelectric materials used in today’s transducer technology, and the principles used in transducer design. It provides examples of a wide range of applications of such materials along with the appertaining rationales. With contributions from distinguished researchers, this is a comprehensive reference on all the pertinent aspects of piezoelectric materials.
Download or read book CMOS Integrated Lab on a chip System for Personalized Biomedical Diagnosis written by Hao Yu and published by John Wiley & Sons. This book was released on 2018-04-04 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough examination of lab-on-a-chip circuit-level operations to improve system performance A rapidly aging population demands rapid, cost-effective, flexible, personalized diagnostics. Existing systems tend to fall short in one or more capacities, making the development of alternatives a priority. CMOS Integrated Lab-on-a-Chip System for Personalized Biomedical Diagnosis provides insight toward the solution, with a comprehensive, multidisciplinary reference to the next wave of personalized medicine technology. A standard complementary metal oxide semiconductor (CMOS) fabrication technology allows mass-production of large-array, miniaturized CMOS-integrated sensors from multi-modal domains with smart on-chip processing capability. This book provides an in-depth examination of the design and mechanics considerations that make this technology a promising platform for microfluidics, micro-electro-mechanical systems, electronics, and electromagnetics. From CMOS fundamentals to end-user applications, all aspects of CMOS sensors are covered, with frequent diagrams and illustrations that clarify complex structures and processes. Detailed yet concise, and designed to help students and engineers develop smaller, cheaper, smarter lab-on-a-chip systems, this invaluable reference: Provides clarity and insight on the design of lab-on-a-chip personalized biomedical sensors and systems Features concise analyses of the integration of microfluidics and micro-electro-mechanical systems Highlights the use of compressive sensing, super-resolution, and machine learning through the use of smart SoC processing Discusses recent advances in complementary metal oxide semiconductor-integrated lab-on-a-chip systems Includes guidance on DNA sequencing and cell counting applications using dual-mode chemical/optical and energy harvesting sensors The conventional reliance on the microscope, flow cytometry, and DNA sequencing leaves diagnosticians tied to bulky, expensive equipment with a central problem of scale. Lab-on-a-chip technology eliminates these constraints while improving accuracy and flexibility, ushering in a new era of medicine. This book is an essential reference for students, researchers, and engineers working in diagnostic circuitry and microsystems.
Download or read book Electromechanical Systems in Microtechnology and Mechatronics written by Arno Lenk and published by Springer Science & Business Media. This book was released on 2010-10-01 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electromechanical systems consisting of electrical, mechanical and acoustic subsystems are of special importance in various technical fields, e.g. precision device engineering, sensor and actuator technology, electroacoustics and medical engineering. Based on a circuit-oriented representation, providing readers with a descriptive engineering design method for these systems is the goal of this textbook. It offers an easy and fast introduction to mechanical, acoustic, fluid, thermal and hydraulic problems through the application of circuit-oriented basic knowledge. The network description methodology, presented in detail, is extended to finite network elements and combined with the finite element method (FEM): the combination of the advantages of both description methods results in novel approaches, especially in the higher frequency range. The book offers numerous current examples of both the design of sensors and actuators and that of direct coupled sensor-actuator systems. The appendix provides more extensive fundamentals for signal description, as well as a compilation of important material characteristics. The textbook is suitable both for graduate students and for engineers working in the fields of electrical engineering, information technology, mechatronics, microtechnology, and mechanical and medical engineering.