EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Capacitance Spectroscopy on Copper Indium Diselenide Based Solar Cells

Download or read book Capacitance Spectroscopy on Copper Indium Diselenide Based Solar Cells written by Verena Mertens and published by . This book was released on 2005 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt: The influence of gallium on the electronically active defects in copper indium diselenide based solar cells is examined. The aim is to clarify whether any detrimental deep levels are responsible for the only sublinear increase in open circuit voltage with increasing band gap for devices with molar gallium to gallium plus indium ratio (GGI) larger than 0.3. A series of samples with different GGI is investigated using deep level transient and admittance spectroscopy (DLTS and AS). For the solar cells with mixed absorber composition (0 GGI

Book Introducing CTS  Copper Tin Sulphide  as a Solar Cell by Using Solar Cell Capacitance Simulator  SCAPS

Download or read book Introducing CTS Copper Tin Sulphide as a Solar Cell by Using Solar Cell Capacitance Simulator SCAPS written by Iraj Sadegh Amiri and published by Springer. This book was released on 2019-05-31 with total page 67 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the enhancement of efficiency in currently used solar cells. The authors have characterized different structures of the solar cell system to optimize system parameters, particularly the performance of the Copper-Tin-Sulphide solar cell using Solar Cell Capacitance Simulator (SCAPS). This research can help scientist to overcome the current limitations and build up new designs of the system with higher efficiency and greater functionality. The authors have investigated the corresponding samples from various viewpoints, including structural (crystallinity, composition and surface morphology), optical (UV–vis–near-IR transmittance/reflectance spectra) and electrical resistivity properties. Describes investigations on Cu2SnS3 solar cells and prospective low cost absorber layer of thin film solar cells; Discusses the potential device structure of Copper-Tin-Sulphide based on thin film technologies; Explains solar cell structure optimization to perform a higher conversion efficiency of Copper-Tin-Sulphide.

Book Chemical and Electronic Characterization of Copper Indium Gallium Diselenide Thin Film Solar Cells and Correlation of These Characteristics to Solar Cell Operation

Download or read book Chemical and Electronic Characterization of Copper Indium Gallium Diselenide Thin Film Solar Cells and Correlation of These Characteristics to Solar Cell Operation written by Michael Justin Hetzer and published by . This book was released on 2009 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: This dissertation embodies solid state physics research to understand the basic physical mechanisms underlying the movement of charge inside solar cells, in particular, the high efficiency copper indium gallium diselenide (CIGS) solar cell. The fundamental physics of the operation of these complex polycrystalline alloys remains incompletely understood. CIGS based solar cells have obtained conversion efficiencies of nearly 20%. Solar cells based on this material have been examined in this work using high resolution, atomic scale techniques to better understand the fundamental operation of these solar cells as well as correlating these basic properties to the operation of the finished full solar cell devices. Auger Electron Spectroscopy (AES) measurements of the chemical composition taken with nanometer resolution in an ultra high vacuum secondary electron microscope show evidence for compositional changes at the grain boundaries of the CIGS layer. These findings support theoretical calculations that predict higher solar cell performance as a result. Additionally, measurements have been taken with cathodoluminescence spectroscopy (CLS) studying the band structure locally within the CIGS layers. Significant variation is present in the resulting spectra, even within single grains indicating improved uniformity could be a path to better solar cell operation. Attempts to correlate the chemical composition and the energy band structure using AES and CLS measurements have yielded some interesting initial results but more work remains to be done to obtain a deeper understanding of the physics involved in these solar cells. Correlations have been observed between the energy band structure and the performance parameters of the solar cell, such as efficiency. These results indicate the possibility of alloying between the different layers of the solar cell and also that this intermixing is detrimental to the performance of the solar cell. This work has revealed important fundamental characteristics of these materials regarding changes in the atomic composition and energy band structure and how these changes influence the performance of the CIGS layer.

Book Copper Indium Diselenide for Photovoltaic Applications

Download or read book Copper Indium Diselenide for Photovoltaic Applications written by Timothy J. Coutts and published by Elsevier Publishing Company. This book was released on 1986 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Characterization of Thin Film Solar Cells

Download or read book Advanced Characterization of Thin Film Solar Cells written by Mowafak Al-Jassim and published by Institution of Engineering and Technology. This book was released on 2020-09-17 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polycrystalline thin-film solar cells have reached a levelized cost of energy that is competitive with all other sources of electricity. The technology has significantly improved in recent years, with laboratory cell efficiencies for cadmium telluride (CdTe), perovskites, and copper indium gallium diselenide (CIGS) each exceeding 22 percent. Both CdTe and CIGS solar panels are now produced at the gigawatt scale. However, there are ongoing challenges, including the continued need to improve performance and stability while reducing cost. Advancing polycrystalline solar cell technology demands an in-depth understanding of efficiency, scaling, and degradation mechanisms, which requires sophisticated characterization methods. These methods will enable researchers and manufacturers to improve future solar modules and systems.

Book Characterization of Photocurrent and Voltage Limitations of Copper indium  Gallium selenide Thin film Polycrystalline Solar Cells

Download or read book Characterization of Photocurrent and Voltage Limitations of Copper indium Gallium selenide Thin film Polycrystalline Solar Cells written by Christopher P. Thompson and published by ProQuest. This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin film polycrystalline CdS/Cu(In, Ga)(Se, S) 2 solar cells have great potential as a candidate for high efficiency, high throughput, low cost production. Cu(In, Ga)Se 2 devices have laboratory efficiencies approaching 20% and module efficiencies around 11%. However, most progress in device optimization has been the result of empirical studies; little is known about the device defect structure, and even less is known about the control of defects within the Cu(In, Ga)(Se, S) 2 absorber. Despite years of study, the complex nature of the Cu(In, Ga)(Se, S) 2 system has made progress towards a fundamental understanding of device behavior, and limiting defects a slow affair. The goal of this work is to shed further light on the nature of the limitations on photocurrent and voltage. The main topics covered in this thesis are: (1) fitting quantum efficiency curves calculated from an analytical model to measured quantum efficiency curves, and (2) Open circuit voltage temperature measurements. For the first section, series of devices with varying absorber layers will be analyzed, using the minority carrier diffusion length as the only fitting parameter. All other variables within the model will be supplied from direct and indirect measurements. We show that by using quantum efficiency, capacitance-voltage, and current-voltage measurements, we can generate excellent fits using only diffusion length as a fitting parameter. It is found that for Cu(In, Ga)Se 2 devices with E G [approximate]1.2eV, L=1000-1500nm.; for wide bandgap devices, with E G [approximate]1.4eV, L=10-400nm; for devices with E G [approximate]1.2eV, deposited with a low substrate temperature, L=650nm. Wide bandgap devices long wavelength collection is limited by minority carrier diffusion. For the second section, V OC (T) measurements are taken on devices with a wide range of absorbers, including some previously un-measured devices; absorbers grown with a Na deficiency. Analysis will focus on the activation energy of the dominant recombination mechanism, as well as low temperature saturation of V OC . Both of these parameters shed light on the limiting properties of devices. Cu(In, Ga)Se 2 with bandgap ranging from 1.2eV-1.4eV are limited by Shockley Read Hall recombination, and have a ratio of saturation voltage to bandgap of 80%. Lowering the electrical quality of the absorber by depositing the Cu(In, Ga)Se 2 layer at lower substrate temperature decreases the ratio of saturation voltage to bandgap to 64%, as a result of increased bandtail defect states. CuInS 2 devices and Cu(In, Ga)Se 2 devices with low or no Na are limited by hetero-interface recombination, and have a saturation voltage to bandgap ratio of ~60%.

Book Novel Capacitance Measurements in Copper Indium Gallium Diselenide Alloys  Final Subcontract Report  1 July 1999  31 August 2003

Download or read book Novel Capacitance Measurements in Copper Indium Gallium Diselenide Alloys Final Subcontract Report 1 July 1999 31 August 2003 written by and published by . This book was released on 2004 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This subcontract report describes the University of Oregon's objectives to measure the electronic properties of the copper indium/gallium diselenide alloys using several well-developed capacitance techniques appropriate for probing materials with a continuous distribution of semiconducting gap electronic energy states. We applied a new synthetic method to the production of CIGS alloys, namely,the modulated elemental reactant method. To form CIGS by this method, alternating layers of Cu:In:Se and Cu:Ga:Se composites, each less than 100 ? thick, were evaporated in sequence and then annealed at low temperature. A second focus was to test and develop junction capacitance methods to better understand the electronic properties in CIGS material and establish a relationship of thoseproperties to specific device performance parameters. The primary methods employed were transient photocapacitance (TPC) spectroscopy and drive-level capacitance profiling (DLCP). Finally, we extended our characterization studies to four CuIn1-xAlxSe2 (CIAS) samples, also supplied by IEC. Our photocapacitance and DLCP measurements on these CIAS samples indicated that for a sample with 13 at.% Al(having a bandgap of nearly 1.2 eV), the electronic properties were essentially identical to those in CIGS samples with 26 at.% Ga.

Book Wide Gap Chalcopyrites

    Book Details:
  • Author : Susanne Siebentritt
  • Publisher : Springer Science & Business Media
  • Release : 2006-02-25
  • ISBN : 3540312935
  • Pages : 267 pages

Download or read book Wide Gap Chalcopyrites written by Susanne Siebentritt and published by Springer Science & Business Media. This book was released on 2006-02-25 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chalcopyrites, in particular those with a wide band gap, are fascinating materials in terms of their technological potential in the next generation of thin-film solar cells and in terms of their basic material properties. They exhibit uniquely low defect formation energies, leading to unusual doping and phase behavior and to extremely benign grain boundaries. This book collects articles on a number of those basic material properties of wide-gap chalcopyrites, comparing them to their low-gap cousins. They explore the doping of the materials, the electronic structure and the transport through interfaces and grain boundaries, the formation of the electric field in a solar cell, the mechanisms and suppression of recombination, the role of inhomogeneities, and the technological role of wide-gap chalcopyrites.

Book Preparation and Characterization of Copper Indium Diselenide based Solar Cells with a Thin Zinc Selenide Intermediate Layer

Download or read book Preparation and Characterization of Copper Indium Diselenide based Solar Cells with a Thin Zinc Selenide Intermediate Layer written by Ji-Beom Yoo and published by . This book was released on 1989 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Characterization Techniques for Perovskite Solar Cell Materials

Download or read book Characterization Techniques for Perovskite Solar Cell Materials written by Meysam Pazoki and published by Elsevier. This book was released on 2019-11-14 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Characterization Techniques for Perovskite Solar Cell Materials: Characterization of Recently Emerged Perovskite Solar Cell Materials to Provide an Understanding of the Fundamental Physics on the Nano Scale and Optimize the Operation of the Device Towards Stable and Low-Cost Photovoltaic Technology explores the characterization of nanocrystals of the perovskite film, related interfaces, and the overall impacts of these properties on device efficiency. Included is a collection of both main and research techniques for perovskite solar cells. For the first time, readers will have a complete reference of different characterization techniques, all housed in a work written by highly experienced experts. - Explores various characterization techniques for perovskite solar cells and discusses both their strengths and weaknesses - Discusses material synthesis and device fabrication of perovskite solar cells - Includes a comparison throughout the work on how to distinguish one perovskite solar cell from another

Book Solar Energy Update

Download or read book Solar Energy Update written by and published by . This book was released on 1984 with total page 884 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Preparation and Characterization of Copper Indium Gallium Diselenide Films Used in the Absorber Layers of Thin film Solar Cells

Download or read book Preparation and Characterization of Copper Indium Gallium Diselenide Films Used in the Absorber Layers of Thin film Solar Cells written by 陳富珊 and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Preparation and Characterization of Copper Indium Gallium Diselenide Powders and Films Used in the Absorber Layer of Thin film Solar Cells

Download or read book Preparation and Characterization of Copper Indium Gallium Diselenide Powders and Films Used in the Absorber Layer of Thin film Solar Cells written by 吳忠憲 and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: