Download or read book Calculus of Variations and Partial Differential Equations written by Luigi Ambrosio and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the summer school in Pisa in September 1996, Luigi Ambrosio and Norman Dancer each gave a course on the geometric problem of evolution of a surface by mean curvature, and degree theory with applications to PDEs respectively. This self-contained presentation accessible to PhD students bridged the gap between standard courses and advanced research on these topics. The resulting book is divided accordingly into 2 parts, and neatly illustrates the 2-way interaction of problems and methods. Each of the courses is augmented and complemented by additional short chapters by other authors describing current research problems and results.
Download or read book Calculus of Variations and Partial Differential Equations of First Order written by C. Carath‚odory and published by American Mathematical Society. This book was released on 2024-09-30 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the Preface: The book consists of two parts. In the first part, I have made an attempt to simplify the presentation of the theory of partial differential equations to the first order so that its study will require little time and also be accessible to the average student of mathematics ? The second part, which contains the Calculus of Variations, can also be read independently if one refers back to earlier sections in Part I ? I have never lost sight of the fact that the Calculus of Variations, as it is presented in Part II, should above all be a servant of Mechanics. Therefore, I have in particular prepared everything from the very outset for treatment in multidimensional spaces. In this second English edition of Carath‚odory's famous work, the two volumes of the first edition have been combined into one (with a combination of the two indexes into a single index). There is a deep and fundamental relationship between the differential equations that occur in the calculus of variations and partial differential equations of the first order: in particular, to each such partial differential equation there correspond variational problems. This basic fact forms the rationale for Carath‚odory's masterpiece.
Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Download or read book Ordinary Differential Equations And Calculus Of Variations written by Victor Yu Reshetnyak and published by World Scientific. This book was released on 1995-06-30 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: This problem book contains exercises for courses in differential equations and calculus of variations at universities and technical institutes. It is designed for non-mathematics students and also for scientists and practicing engineers who feel a need to refresh their knowledge. The book contains more than 260 examples and about 1400 problems to be solved by the students — much of which have been composed by the authors themselves. Numerous references are given at the end of the book to furnish sources for detailed theoretical approaches, and expanded treatment of applications.
Download or read book Differential Equations and the Calculus of Variations written by Lev Elsgolts and published by . This book was released on 2003-12-01 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in the Soviet Union, this text is meant for students of higher schools and deals with the most important sections of mathematics - differential equations and the calculus of variations. The first part describes the theory of differential equations and reviews the methods for integrating these equations and investigating their solutions. The second part gives an idea of the calculus of variations and surveys the methods for solving variational problems. The book contains a large number of examples and problems with solutions involving applications of mathematics to physics and mechanics. Apart from its main purpose the textbook is of interest to expert mathematicians. Lev Elsgolts (deceased) was a Doctor of Physico-Mathematical Sciences, Professor at the Patrice Lumumba University of Friendship of Peoples. His research work was dedicated to the calculus of variations and differential equations. He worked out the theory of differential equations with deviating arguments and supplied methods for their solution. Lev Elsgolts was the author of many printed works. Among others, he wrote the well-known books Qualitative Methods in Mathematical Analysis and Introduction to the Theory of Differential Equations with Deviating Arguments. In addition to his research work Lev Elsgolts taught at higher schools for over twenty years.
Download or read book Calculus of Variations written by Filip Rindler and published by Springer. This book was released on 2018-06-20 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a comprehensive introduction to the classical and modern calculus of variations, serving as a useful reference to advanced undergraduate and graduate students as well as researchers in the field. Starting from ten motivational examples, the book begins with the most important aspects of the classical theory, including the Direct Method, the Euler-Lagrange equation, Lagrange multipliers, Noether’s Theorem and some regularity theory. Based on the efficient Young measure approach, the author then discusses the vectorial theory of integral functionals, including quasiconvexity, polyconvexity, and relaxation. In the second part, more recent material such as rigidity in differential inclusions, microstructure, convex integration, singularities in measures, functionals defined on functions of bounded variation (BV), and Γ-convergence for phase transitions and homogenization are explored. While predominantly designed as a textbook for lecture courses on the calculus of variations, this book can also serve as the basis for a reading seminar or as a companion for self-study. The reader is assumed to be familiar with basic vector analysis, functional analysis, Sobolev spaces, and measure theory, though most of the preliminaries are also recalled in the appendix.
Download or read book First Order Partial Differential Equations Vol 1 written by Hyun-Ku Rhee and published by Courier Corporation. This book was released on 2014-05-05 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first volume of a highly regarded two-volume text is fully usable on its own. After going over some of the preliminaries, the authors discuss mathematical models that yield first-order partial differential equations; motivations, classifications, and some methods of solution; linear and semilinear equations; chromatographic equations with finite rate expressions; homogeneous and nonhomogeneous quasilinear equations; formation and propagation of shocks; conservation equations, weak solutions, and shock layers; nonlinear equations; and variational problems. Exercises appear at the end of most sections. This volume is geared to advanced undergraduates or first-year grad students with a sound understanding of calculus and elementary ordinary differential equations. 1986 edition. 189 black-and-white illustrations. Author and subject indices.
Download or read book The Inverse Problem of the Calculus of Variations written by Dmitry V. Zenkov and published by Springer. This book was released on 2015-10-15 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the present book is to give a systematic treatment of the inverse problem of the calculus of variations, i.e. how to recognize whether a system of differential equations can be treated as a system for extremals of a variational functional (the Euler-Lagrange equations), using contemporary geometric methods. Selected applications in geometry, physics, optimal control, and general relativity are also considered. The book includes the following chapters: - Helmholtz conditions and the method of controlled Lagrangians (Bloch, Krupka, Zenkov) - The Sonin-Douglas's problem (Krupka) - Inverse variational problem and symmetry in action: The Ostrogradskyj relativistic third order dynamics (Matsyuk.) - Source forms and their variational completion (Voicu) - First-order variational sequences and the inverse problem of the calculus of variations (Urban, Volna) - The inverse problem of the calculus of variations on Grassmann fibrations (Urban).
Download or read book Applied Calculus of Variations for Engineers written by Louis Komzsik and published by CRC Press. This book was released on 2018-09-03 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of the calculus of variations is to find optimal solutions to engineering problems whose optimum may be a certain quantity, shape, or function. Applied Calculus of Variations for Engineers addresses this important mathematical area applicable to many engineering disciplines. Its unique, application-oriented approach sets it apart from the theoretical treatises of most texts, as it is aimed at enhancing the engineer’s understanding of the topic. This Second Edition text: Contains new chapters discussing analytic solutions of variational problems and Lagrange-Hamilton equations of motion in depth Provides new sections detailing the boundary integral and finite element methods and their calculation techniques Includes enlightening new examples, such as the compression of a beam, the optimal cross section of beam under bending force, the solution of Laplace’s equation, and Poisson’s equation with various methods Applied Calculus of Variations for Engineers, Second Edition extends the collection of techniques aiding the engineer in the application of the concepts of the calculus of variations.
Download or read book Calculus of Variations written by I. M. Gelfand and published by Courier Corporation. This book was released on 2012-04-26 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fresh, lively text serves as a modern introduction to the subject, with applications to the mechanics of systems with a finite number of degrees of freedom. Ideal for math and physics students.
Download or read book A First Course in the Calculus of Variations written by Mark Kot and published by American Mathematical Society. This book was released on 2014-10-06 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for a first course in the calculus of variations, at the senior or beginning graduate level. The reader will learn methods for finding functions that maximize or minimize integrals. The text lays out important necessary and sufficient conditions for extrema in historical order, and it illustrates these conditions with numerous worked-out examples from mechanics, optics, geometry, and other fields. The exposition starts with simple integrals containing a single independent variable, a single dependent variable, and a single derivative, subject to weak variations, but steadily moves on to more advanced topics, including multivariate problems, constrained extrema, homogeneous problems, problems with variable endpoints, broken extremals, strong variations, and sufficiency conditions. Numerous line drawings clarify the mathematics. Each chapter ends with recommended readings that introduce the student to the relevant scientific literature and with exercises that consolidate understanding.
Download or read book Direct Methods in the Calculus of Variations written by Enrico Giusti and published by World Scientific. This book was released on 2003 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive discussion on the existence and regularity of minima of regular integrals in the calculus of variations and of solutions to elliptic partial differential equations and systems of the second order. While direct methods for the existence of solutions are well known and have been widely used in the last century, the regularity of the minima was always obtained by means of the Euler equation as a part of the general theory of partial differential equations. In this book, using the notion of the quasi-minimum introduced by Giaquinta and the author, the direct methods are extended to the regularity of the minima of functionals in the calculus of variations, and of solutions to partial differential equations. This unified treatment offers a substantial economy in the assumptions, and permits a deeper understanding of the nature of the regularity and singularities of the solutions. The book is essentially self-contained, and requires only a general knowledge of the elements of Lebesgue integration theory. Contents: Semi-Classical Theory; Measurable Functions; Sobolev Spaces; Convexity and Semicontinuity; Quasi-Convex Functionals; Quasi-Minima; HAlder Continuity; First Derivatives; Partial Regularity; Higher Derivatives. Readership: Graduate students, academics and researchers in the field of analysis and differential equations."
Download or read book Functional Analysis Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Download or read book The Calculus of Variations written by Bruce van Brunt and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for advanced undergraduate and graduate students of mathematics, physics, or engineering, this introduction to the calculus of variations focuses on variational problems involving one independent variable. It also discusses more advanced topics such as the inverse problem, eigenvalue problems, and Noether’s theorem. The text includes numerous examples along with problems to help students consolidate the material.
Download or read book Functional Analysis Calculus of Variations and Optimal Control written by Francis Clarke and published by Springer Science & Business Media. This book was released on 2013-02-06 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields.
Download or read book Lectures on Elliptic Partial Differential Equations written by Luigi Ambrosio and published by Springer. This book was released on 2019-01-10 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book originates from the Elliptic PDE course given by the first author at the Scuola Normale Superiore in recent years. It covers the most classical aspects of the theory of Elliptic Partial Differential Equations and Calculus of Variations, including also more recent developments on partial regularity for systems and the theory of viscosity solutions.
Download or read book Mathematical Problems in Image Processing written by Gilles Aubert and published by Springer Science & Business Media. This book was released on 2008-04-06 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Partial differential equations and variational methods were introduced into image processing about 15 years ago, and intensive research has been carried out since then. The main goal of this work is to present the variety of image analysis applications and the precise mathematics involved. It is intended for two audiences. The first is the mathematical community, to show the contribution of mathematics to this domain and to highlight some unresolved theoretical questions. The second is the computer vision community, to present a clear, self-contained, and global overview of the mathematics involved in image processing problems. The book is divided into five main parts. Chapter 1 is a detailed overview. Chapter 2 describes and illustrates most of the mathematical notions found throughout the work. Chapters 3 and 4 examine how PDEs and variational methods can be successfully applied in image restoration and segmentation processes. Chapter 5, which is more applied, describes some challenging computer vision problems, such as sequence analysis or classification. This book will be useful to researchers and graduate students in mathematics and computer vision.