EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Calculation of the Effective Permeability and Simulation of Fluid Flow in Naturally Fractured Reservoirs

Download or read book Calculation of the Effective Permeability and Simulation of Fluid Flow in Naturally Fractured Reservoirs written by Ahmed Teimoori Sangani and published by . This book was released on 2005 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fractured Vuggy Carbonate Reservoir Simulation

Download or read book Fractured Vuggy Carbonate Reservoir Simulation written by Jun Yao and published by Springer. This book was released on 2017-08-08 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book solves the open problems in fluid flow modeling through the fractured vuggy carbonate reservoirs. Fractured vuggy carbonate reservoirs usually have complex pore structures, which contain not only matrix and fractures but also the vugs and cavities. Since the vugs and cavities are irregular in shape and vary in diameter from millimeters to meters, modeling fluid flow through fractured vuggy porous media is still a challenge. The existing modeling theory and methods are not suitable for such reservoir. It starts from the concept of discrete fracture and fracture-vug networks model, and then develops the corresponding mathematical models and numerical methods, including discrete fracture model, discrete fracture-vug model, hybrid model and multiscale models. Based on these discrete porous media models, some equivalent medium models and methods are also discussed. All the modeling and methods shared in this book offer the key recent solutions into this area.

Book Naturally Fractured Reservoirs

Download or read book Naturally Fractured Reservoirs written by Roberto Aguilera and published by Pennwell Corporation. This book was released on 1995 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: This publication deals exclusively with naturally fractured reservoirs, and includes many subjects usually treated in separate volumes. It is written for students, reservoir geologists, log analysts and petroleum engineers.

Book Simulation of Fluid Flow Mechanisms in High Permeability Zones  Super K  in a Giant Naturally Fractured Carbonate Reservoir

Download or read book Simulation of Fluid Flow Mechanisms in High Permeability Zones Super K in a Giant Naturally Fractured Carbonate Reservoir written by Amer H. Abu-Hassoun and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluid flow mechanisms in a large naturally fractured heterogeneous carbonate reservoir were investigated in this manuscript. A very thin layer with high permeability that produces the majority of production from specific wells and is deemed the Super-K Zone was investigated. It is known that these zones are connected to naturally occurring fractures. Fluid flow in naturally fractured reservoirs is a very difficult mechanism to understand. To accomplish this mission, the Super-K Zone and fractures were treated as two systems. Reservoir management practices and decisions should be very carefully reviewed and executed in this dual continuum reservoir based on the results of this work. Studying this dual media flow behavior is vital for better future completion strategies and for enhanced reservoir management decisions. The reservoir geology, Super-K identification and natural fractures literature were reviewed. To understand how fluid flows in such a dual continuum reservoir, a dual permeability simulation model has been studied. Some geological and production iv data were used; however, due to unavailability of some critical values of the natural fractures, the model was assumed hypothetical. A reasonable history match was achieved and was set as a basis of the reservoir model. Several sensitivity studies were run to understand fluid flow behavior and prediction runs were executed to help make completion recommendations for future wells based on the results obtained. Conclusions and recommended completions were highlighted at the end of this research. It was realized that the natural fractures are the main source of premature water breakthrough, and the Super-K acts as a secondary cause of water channeling to the wellbore.

Book Geomechanics  Fluid Dynamics and Well Testing  Applied to Naturally Fractured Carbonate Reservoirs

Download or read book Geomechanics Fluid Dynamics and Well Testing Applied to Naturally Fractured Carbonate Reservoirs written by Nelson Enrique Barros Galvis and published by Springer. This book was released on 2019-01-05 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents an important step towards a deeper understanding of naturally fractured carbonate reservoirs (NFCRs). It demonstrates the various kinds of discontinuities using geological evidence, mathematical kinematics model and computed tomography and uses this as a basis for proposing a new classification for NFCRs. Additionally, this study takes advantage of rock mechanics theory to illustrate how natural fractures can collapse due to fluid flow and pressure changes in the fractured media. The explanations and mathematical modeling developed in this dissertation can be used as diagnostic tools to predict fluid velocity, fluid flow, tectonic fracture collapse, pressure behavior during reservoir depleting, considering stress-sensitive and non-stress-sensitive, with nonlinear terms in the diffusivity equation applied to NFCRs. Furthermore, the book presents the description of real reservoirs with their field data as the principal goal in the mathematical description of the realistic phenomenology of NFCRs.

Book Multiphase Fluid Flow in Porous and Fractured Reservoirs

Download or read book Multiphase Fluid Flow in Porous and Fractured Reservoirs written by Yu-Shu Wu and published by Gulf Professional Publishing. This book was released on 2015-09-23 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiphase Fluid Flow in Porous and Fractured Reservoirs discusses the process of modeling fluid flow in petroleum and natural gas reservoirs, a practice that has become increasingly complex thanks to multiple fractures in horizontal drilling and the discovery of more unconventional reservoirs and resources. The book updates the reservoir engineer of today with the latest developments in reservoir simulation by combining a powerhouse of theory, analytical, and numerical methods to create stronger verification and validation modeling methods, ultimately improving recovery in stagnant and complex reservoirs. Going beyond the standard topics in past literature, coverage includes well treatment, Non-Newtonian fluids and rheological models, multiphase fluid coupled with geomechanics in reservoirs, and modeling applications for unconventional petroleum resources. The book equips today’s reservoir engineer and modeler with the most relevant tools and knowledge to establish and solidify stronger oil and gas recovery. Delivers updates on recent developments in reservoir simulation such as modeling approaches for multiphase flow simulation of fractured media and unconventional reservoirs Explains analytical solutions and approaches as well as applications to modeling verification for today’s reservoir problems, such as evaluating saturation and pressure profiles and recovery factors or displacement efficiency Utilize practical codes and programs featured from online companion website

Book Embedded Discrete Fracture Modeling and Application in Reservoir Simulation

Download or read book Embedded Discrete Fracture Modeling and Application in Reservoir Simulation written by Kamy Sepehrnoori and published by Elsevier. This book was released on 2020-08-27 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of naturally fractured reservoirs, especially shale gas and tight oil reservoirs, exploded in recent years due to advanced drilling and fracturing techniques. However, complex fracture geometries such as irregular fracture networks and non-planar fractures are often generated, especially in the presence of natural fractures. Accurate modelling of production from reservoirs with such geometries is challenging. Therefore, Embedded Discrete Fracture Modeling and Application in Reservoir Simulation demonstrates how production from reservoirs with complex fracture geometries can be modelled efficiently and effectively. This volume presents a conventional numerical model to handle simple and complex fractures using local grid refinement (LGR) and unstructured gridding. Moreover, it introduces an Embedded Discrete Fracture Model (EDFM) to efficiently deal with complex fractures by dividing the fractures into segments using matrix cell boundaries and creating non-neighboring connections (NNCs). A basic EDFM approach using Cartesian grids and advanced EDFM approach using Corner point and unstructured grids will be covered. Embedded Discrete Fracture Modeling and Application in Reservoir Simulation is an essential reference for anyone interested in performing reservoir simulation of conventional and unconventional fractured reservoirs. Highlights the current state-of-the-art in reservoir simulation of unconventional reservoirs Offers understanding of the impacts of key reservoir properties and complex fractures on well performance Provides case studies to show how to use the EDFM method for different needs

Book Numerical Modeling of Fracture Permeability Change in Naturally Fractured Reservoirs Using a Fully Coupled Displacement Discontinuity Method

Download or read book Numerical Modeling of Fracture Permeability Change in Naturally Fractured Reservoirs Using a Fully Coupled Displacement Discontinuity Method written by Qingfeng Tao and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractures are the main flow channels in naturally fractured reservoirs. Therefore the fracture permeability is a critical parameter to production optimization and reservoir management. Fluid pressure reduction caused by production induces an increase in effective stress in naturally fractured reservoirs. The change of effective stress induces fracture deformation and changes fracture aperture and permeability, which in turn influences the production. Coupled interactions exist in the fractured reservoir: (i) fluid pressure change induces matrix deformation and stress change; (ii) matrix deformation induces fluid volume change and fluid pressure change; (iii) fracture deformation induces the change of pore pressure and stress in the whole field (the influence disappears at infinity); (iv) the change of pore pressure and stress at any point has an influence on the fracture and induces fracture deformation. To model accurately the influence of pressure reduction on the fracture permeability change in naturally fractured reservoirs, all of these coupled processes need to be considered. Therefore, in this dissertation a fully coupled approach is developed to model the influence of production on fracture aperture and permeability by combining a finite difference method to solve the fluid flow in fractures, a fully coupled displacement discontinuity method to build the global relation of fracture deformation, and the Barton-Bandis model of fracture deformation to build the local relation of fracture deformation. The fully coupled approach is applied to simulate the fracture permeability change in naturally fracture reservoir under isotropic in situ stress conditions and high anisotropic in situ stress conditions, respectively. Under isotropic stress conditions, the fracture aperture and permeability decrease with pressure reduction caused by production, and the magnitude of the decrease is dependent on the initial effective in situ stress. Under highly anisotropic stress, the fracture permeability can be enhanced by production because of shear dilation. The enhancement of fracture permeability will benefit to the production of oil and gas.

Book Fractured Porous Media

    Book Details:
  • Author : Pierre M. Adler
  • Publisher : Oxford University Press, USA
  • Release : 2013
  • ISBN : 0199666512
  • Pages : 184 pages

Download or read book Fractured Porous Media written by Pierre M. Adler and published by Oxford University Press, USA. This book was released on 2013 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic treatment of the geometrical and transport properties of fractures, fracture networks, and fractured porous media. It is divided into two major parts. The first part deals with geometry of individual fractures and of fracture networks. The use of the dimensionless density rationalizes the results for the percolation threshold of the networks. It presents the crucial advantage of grouping the numerical data for various fracture shapes. The second part deals mainly with permeability under steady conditions of fractures, fracture networks, and fractured porous media. Again the results for various types of networks can be rationalized by means of the dimensionless density. A chapter is dedicated to two phase flow in fractured porous media.

Book Development of an Efficient Embedded Discrete Fracture Model for 3D Compositional Reservoir Simulation in Fractured Reservoirs

Download or read book Development of an Efficient Embedded Discrete Fracture Model for 3D Compositional Reservoir Simulation in Fractured Reservoirs written by Ali Moinfar and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Naturally fractured reservoirs (NFRs) hold a significant amount of the world's hydrocarbon reserves. Compared to conventional reservoirs, NFRs exhibit a higher degree of heterogeneity and complexity created by fractures. The importance of fractures in production of oil and gas is not limited to naturally fractured reservoirs. The economic exploitation of unconventional reservoirs, which is increasingly a major source of short- and long-term energy in the United States, hinges in part on effective stimulation of low-permeability rock through multi-stage hydraulic fracturing of horizontal wells. Accurate modeling and simulation of fractured media is still challenging owing to permeability anisotropies and contrasts. Non-physical abstractions inherent in conventional dual porosity and dual permeability models make these methods inadequate for solving different fluid-flow problems in fractured reservoirs. Also, recent approaches for discrete fracture modeling may require large computational times and hence the oil industry has not widely used such approaches, even though they give more accurate representations of fractured reservoirs than dual continuum models. We developed an embedded discrete fracture model (EDFM) for an in-house fully-implicit compositional reservoir simulator. EDFM borrows the dual-medium concept from conventional dual continuum models and also incorporates the effect of each fracture explicitly. In contrast to dual continuum models, fractures have arbitrary orientations and can be oblique or vertical, honoring the complexity and heterogeneity of a typical fractured reservoir. EDFM employs a structured grid to remediate challenges associated with unstructured gridding required for other discrete fracture models. Also, the EDFM approach can be easily incorporated in existing finite difference reservoir simulators. The accuracy of the EDFM approach was confirmed by comparing the results with analytical solutions and fine-grid, explicit-fracture simulations. Comparison of our results using the EDFM approach with fine-grid simulations showed that accurate results can be achieved using moderate grid refinements. This was further verified in a mesh sensitivity study that the EDFM approach with moderate grid refinement can obtain a converged solution. Hence, EDFM offers a computationally-efficient approach for simulating fluid flow in NFRs. Furthermore, several case studies presented in this study demonstrate the applicability, robustness, and efficiency of the EDFM approach for modeling fluid flow in fractured porous media. Another advantage of EDFM is its extensibility for various applications by incorporating different physics in the model. In order to examine the effect of pressure-dependent fracture properties on production, we incorporated the dynamic behavior of fractures into EDFM by employing empirical fracture deformation models. Our simulations showed that fracture deformation, caused by effective stress changes, substantially affects pressure depletion and hydrocarbon recovery. Based on the examples presented in this study, implementation of fracture geomechanical effects in EDFM did not degrade the computational performance of EDFM. Many unconventional reservoirs comprise well-developed natural fracture networks with multiple orientations and complex hydraulic fracture patterns suggested by microseismic data. We developed a coupled dual continuum and discrete fracture model to efficiently simulate production from these reservoirs. Large-scale hydraulic fractures were modeled explicitly using the EDFM approach and numerous small-scale natural fractures were modeled using a dual continuum approach. The transport parameters for dual continuum modeling of numerous natural fractures were derived by upscaling the EDFM equations. Comparison of the results using the coupled model with that of using the EDFM approach to represent all natural and hydraulic fractures explicitly showed that reasonably accurate results can be obtained at much lower computational cost by using the coupled approach with moderate grid refinements.

Book ADVANCED TECHNOLOGY FOR PREDICTING THE FLUID FLOW ATTRIBUTES OF NATURALLY FRACTURED RESERVOIRS FROM QUANTITATIVE GEOLOGIC DATA AND MODELING

Download or read book ADVANCED TECHNOLOGY FOR PREDICTING THE FLUID FLOW ATTRIBUTES OF NATURALLY FRACTURED RESERVOIRS FROM QUANTITATIVE GEOLOGIC DATA AND MODELING written by Larry W. Lake and published by . This book was released on 2003 with total page 891 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report summarizes the work carried out during the period of September 29, 2001 to September 28, 2002 under DOE Research Contract No. DE-FC26-00BC15308. Our goal is to establish an integrated methodology of fractured reservoir characterization and show how that can be incorporated into fluid flow simulation. We have made progress in all of our proposed tasks this year. We have continued to study the microstructures associated with fractures to document the interaction between fracture growth and diagenetic mineral growth in subsurface reservoir rocks. We have developed a model to simulate the geochemical controls on fracture mineralization. Under certain geologic conditions, the process can be classified as convection- or reaction-dominated using Peclet number and Damkohler number. The model shows that to have a relatively uniform deposition of calcite within a fracture, the velocity of supersaturated solution must be very high or the solution must be only slightly supersaturated with respect to calcite. We have postulated a preliminary model to explain the dependence of subcritical crack index on lithologic and diagenetic parameters. Grain size, cement content, and porosity dominate the subcritical index value, given the same chemical environment. Finally, using subcritical crack growth measurements from a West Texas dolomite reservoir and our fracture propagation model, we generated natural fracture networks that were imported into a reservoir simulator. We found that reservoir block permeability depended not only on the intensity of fracturing (as measured by the cumulative length of fractures per area) but also the degree of clustering and the average length of the individual fracture segments in a population. This type of modeling at the outcrop scale will be a stepping stone to determining effective simulation block permeability for field scale modeling. Finally, we have developed a technique for a direct analysis of well rate fluctuations that allows determination of the connectivity between well pairs in injection processes. The results of this analysis appear to agree with independently-determined geological features and should be useful in determining fracture patterns flow characteristics at the field scale.

Book Simulation of Naturally Fractured Reservoirs Using Empirical Transfer Function

Download or read book Simulation of Naturally Fractured Reservoirs Using Empirical Transfer Function written by Prasanna Kumar Tellapaneni and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This research utilizes the imbibition experiments and X-ray tomography results for modeling fluid flow in naturally fractured reservoirs. Conventional dual porosity simulation requires large number of runs to quantify transfer function parameters for history matching purposes. In this study empirical transfer functions (ETF) are derived from imbibition experiments and this allows reduction in the uncertainness in modeling of transfer of fluids from the matrix to the fracture. The application of the ETF approach is applied in two phases. In the first phase, imbibition experiments are numerically solved using the diffusivity equation with different boundary conditions. Usually only the oil recovery in imbibition experiments is matched. But with the advent of X-ray CT, the spatial variation of the saturation can also be computed. The matching of this variation can lead to accurate reservoir characterization. In the second phase, the imbibition derived empirical transfer functions are used in developing a dual porosity reservoir simulator. The results from this study are compared with published results. The study reveals the impact of uncertainty in the transfer function parameters on the flow performance and reduces the computations to obtain transfer function required for dual porosity simulation.

Book Petrophysics

Download or read book Petrophysics written by Erle C. Donaldson and published by Elsevier. This book was released on 2004-01-24 with total page 916 pages. Available in PDF, EPUB and Kindle. Book excerpt: The petroleum geologist and engineer must have a working knowledge of petrophysics in order to find oil reservoirs, devise the best plan for getting it out of the ground, then start drilling. This book offers the engineer and geologist a manual to accomplish these goals, providing much-needed calculations and formulas on fluid flow, rock properties, and many other topics that are encountered every day. New updated material covers topics that have emerged in the petrochemical industry since 1997. Contains information and calculations that the engineer or geologist must use in daily activities to find oil and devise a plan to get it out of the ground Filled with problems and solutions, perfect for use in undergraduate, graduate, or professional courses Covers real-life problems and cases for the practicing engineer

Book Modeling and Simulation of Fluid Flow in Naturally and Hydraulically Fractured Reservoirs Using Embedded Discrete Fracture Model  EDFM

Download or read book Modeling and Simulation of Fluid Flow in Naturally and Hydraulically Fractured Reservoirs Using Embedded Discrete Fracture Model EDFM written by Mahmood Shakiba and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling and simulation of fluid flow in subsurface fractured systems has been steadily a popular topic in petroleum industry. The huge potential hydrocarbon reserve in naturally and hydraulically fractured reservoirs has been a major stimulant for developments in this field. Although several models have found limited applications in studying fractured reservoirs, still more comprehensive models are required to be applied for practical purposes. A recently developed Embedded Discrete Fracture Model (EDFM) incorporates the advantages of two of the well-known approaches, the dual continuum and the discrete fracture models, to investigate more complex fracture geometries. In EDFM, each fracture is embedded inside the matrix grid and is discretized by the cell boundaries. This approach introduces a robust methodology to represent the fracture planes explicitly in the computational domain. As part of this research, the EDFM was implemented in two of The University of Texas in-house reservoir simulators, UTCOMP and UTGEL. The modified reservoir simulators are capable of modeling and simulation of a broad range of reservoir engineering applications in naturally and hydraulically fractured reservoirs. To validate this work, comparisons were made against a fine-grid simulation and a semi-analytical solution. Also, the results were compared for more complicated fracture geometries with the results obtained from EDFM implementation in the GPAS reservoir simulator. In all the examples, good agreements were observed. To further illustrate the application and capabilities of UTCOMP- and UTGEL-EDFM, a few case studies were presented. First, a synthetic reservoir model with a network of fractures was considered to study the impact of well placement. It was shown that considering the configuration of background fracture networks can significantly improve the well placement design and also maximize the oil recovery. Then, the capillary imbibition effect was investigated for the same reservoir models to display its effect on incremental oil recovery. Furthermore, UTCOMP-EDFM was applied for hydraulic fracturing design where the performances of a simple and a complex fracture networks were evaluated in reservoirs with different rock matrix permeabilities. Accordingly, it was shown that a complex network is an ideal design for a very low permeability reservoir, while a simple network results in higher recovery when the reservoir permeability is moderate. Finally, UTGEL-EDFM was employed to optimize a conformance control process. Different injection timings and different gel concentrations were selected for water-flooding processes and their impact on oil recovery was evaluated henceforth.

Book Proceedings of the International Field Exploration and Development Conference 2018

Download or read book Proceedings of the International Field Exploration and Development Conference 2018 written by Jia'en Lin and published by Springer Nature. This book was released on 2019-10-02 with total page 2041 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers selected papers from the 8th International Field Exploration and Development Conference (IFEDC 2018) and addresses a broad range of topics, including: Reservoir Surveillance and Management, Reservoir Evaluation and Dynamic Description, Reservoir Production Stimulation and EOR, Ultra-Tight Reservoirs, Unconventional Oil and Gas Resources Technology, Oil and Gas Well Production Testing, and Geomechanics. In brief, the papers introduce readers to upstream technologies used in oil & gas development, the main principles of the process, and various related design technologies. The conference not only provided a platform to exchange experiences, but also promoted the advancement of scientific research in oil & gas exploration and production. The book is chiefly intended for industry experts, professors, researchers, senior engineers, and enterprise managers.

Book Rock Fractures and Fluid Flow

    Book Details:
  • Author : National Research Council
  • Publisher : National Academies Press
  • Release : 1996-08-27
  • ISBN : 0309049962
  • Pages : 568 pages

Download or read book Rock Fractures and Fluid Flow written by National Research Council and published by National Academies Press. This book was released on 1996-08-27 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.

Book Fluid Flow in Porous Media

Download or read book Fluid Flow in Porous Media written by Robert Wayne Zimmerman and published by Wspc (Europe). This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pressure diffusion equation for fluid flow in porous rocks -- Line source solution for a vertical well in an infinite reservoir -- Superposition and pressure buildup tests -- Effect of faults and linear boundaries -- Wellbore skin and wellbore storage -- Production from bounded reservoirs -- Laplace transform methods in reservoir engineering -- Naturally-fractured reservoirs -- Flow of gases in porous media