EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fundamentals of Conjugated Polymer Blends  Copolymers and Composites

Download or read book Fundamentals of Conjugated Polymer Blends Copolymers and Composites written by Parveen Saini and published by John Wiley & Sons. This book was released on 2015-04-30 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their discovery in 1977, the evolution of conducting polymers has revolutionized modern science and technology. These polymers enjoy a special status in the area of materials science yet they are not as popular among young readers or common people when compared to other materials like metals, paper, plastics, rubber, textiles, ceramics and composites like concrete. Most importantly, much of the available literature in the form of papers, specific review articles and books is targeted either at advanced readers (scientists / technologists / engineers / senior academicians) or for those who are already familiar with the topic (doctoral / postdoctoral scholars). For a beginner or even school / college students, such compilations are bit difficult to access / digest. In fact, they need proper introduction to the topic of conducting polymers including their discovery, preparation, properties, applications and societal impact, using suitable examples and already known principles/knowledge/phenomenon. Further, active participation of readers in terms of "question & answers", "fill-in-the-blanks", "numerical" along with suitable answer key is necessary to maintain the interest and to initiate the "thought process". The readers also need to know about the drawbacks and any hazards of such materials. Therefore, I believe that a comprehensive source on the science / technology of conducting polymers which maintains a link between grass root fundamentals and state-of-the-art R&D is still missing from the open literature.

Book Nanostructured Solar Cells

Download or read book Nanostructured Solar Cells written by Guanying Chen and published by MDPI. This book was released on 2018-07-04 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Nanostructured Solar Cells" that was published in Nanomaterials

Book Polymer Photovoltaics

    Book Details:
  • Author : Fei Huang
  • Publisher : Royal Society of Chemistry
  • Release : 2016
  • ISBN : 1849739870
  • Pages : 422 pages

Download or read book Polymer Photovoltaics written by Fei Huang and published by Royal Society of Chemistry. This book was released on 2016 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: An international perspective on the latest research in polymer solar cell technology.

Book Polymer polymer blends in organic photovoltaic and photodiode devices

Download or read book Polymer polymer blends in organic photovoltaic and photodiode devices written by Yuxin Xia and published by Linköping University Electronic Press. This book was released on 2019-01-04 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic photovoltaics devices (OPV) have attracted attentions of scientist for their potential as inexpensive, lightweight, flexible and suitable for roll-to-roll production. In recent years, considerable attention has been focused on new acceptor materials, either polymeric or small molecules, to replace the once dominating fullerene derivatives. The emergence of numerous new non-fullerene materials has driven power conversion efficiency (PCE) up to 17%, attracting more and more interests of commercialization. Polymer acceptors with more morphology stability, more absorption and more desired energy levels has been intensively studied and show great potential for large area and low-cost production in the future. OPV at this moment is not yet competitive with inorganic solar cells in PCE but is more attractive in flexibility, low weight and semitransparency. In this thesis, some basic knowledges of OPV is introduced in the first few chapters, while the next chapters are focusing on polymer-polymer blends and investigating novel structures and techniques for large scale production of solar cells and photodetectors aiming at maximizing these advantages to compete with inorganic counterpart. Thermal annealing effects on polymer-polymer solar cells based is studied. Annealed devices show doubled power conversion efficiency compared to non-annealed devices. Based on the morphology—mobility examination, we conclude that the better charge transport is achieved by higher order and better interconnected networks of the bulk heterojunction in the annealed active layers. The annealing improves charge transport and extends the conjugation length of the polymers, which do help charge generation and meanwhile reduce recombination. The blend of an amorphous polymer and a semi-crystalline polymer can thus be modified by thermal annealing to double the power conversion efficiency. A novel concept of all-polymer organic photovoltaics device is demonstrated in this thesis where all the layers are made out of polymers. We use PEDOT:PSS as semitransparent anode and polyethyleneimine modified PEDOT:PSS as semitransparent cathode, both of which are slot-die printed on polyethylene terephthalate(PET). Active layers are deposited on cathode and anode surfaces by spin coating separately. These layers are then joined through a roll-to-roll compatible lamination process. This forms a semitransparent and flexible solar cell. By laminating a thin layer acceptor polymer to a thick polymer-polymer blend, we can further improve the performance by reducing traps comparing to laminating blend to blend. Flexible and semitransparent all-polymer photodiodes with different geometries can be fabricated through lamination. By choosing high band gap polymers and appropriate combination of two or more polymers, organic photodiode with low noise and high specific detectivity can be obtained. Comparison between bilayer and bulk heterojunction devices gives better understanding of the origin of noise and provides ways to improve the performance of photodiodes as detector. Noise level is a critical parameter for photodetectors. The difficulties of measuring the noise of photodetectors make some researchers prefer the estimated shot noise as the dominating one and ignore the thermal noise and 1/f noise. The latter two terms are sometimes several orders higher than the former, noting the importance of experimentally measuring noise. The use of semi-transparent photovoltaic devices causes an inevitable loss of photocurrent, as light transmitted has not been absorbed. This trivial effect also leads to a loss of photovoltage, an effect partially due to the lower photocurrent but also due to the geometry of the semitransparent photovoltaic device. We here demonstrate and evaluate this photovoltage loss in semi-transparent organic photovoltaic devices, compared with non-transparent solar cells of the same material. Semi-transparent solar cells in addition introduce photovoltage loss when formed by lamination. We document and analyze these effects for a number of polymer blends in the form of bulk heterojunctions.

Book Small Molecule Semiconductors for High Efficiency Organic Solar Cells

Download or read book Small Molecule Semiconductors for High Efficiency Organic Solar Cells written by Chuanlang Zhan and published by Frontiers Media SA. This book was released on 2019-08-15 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Semiconductor Materials for Solar Photovoltaic Cells

Download or read book Semiconductor Materials for Solar Photovoltaic Cells written by M. Parans Paranthaman and published by Springer. This book was released on 2015-09-16 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing. Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost. Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce costs, with particular focus on how to reduce the gap between laboratory scale efficiency and commercial module efficiency. This book will aid materials scientists and engineers in identifying research priorities to fulfill energy needs, and will also enable researchers to understand novel semiconductor materials that are emerging in the solar market. This integrated approach also gives science and engineering students a sense of the excitement and relevance of materials science in the development of novel semiconductor materials. · Provides a comprehensive introduction to solar PV cell materials · Reviews current and future status of solar cells with respect to cost and efficiency · Covers the full range of solar cell materials, from silicon and thin films to dye sensitized and organic solar cells · Offers an in-depth account of the semiconductor material strategies and directions for further research · Features detailed tables on the world leaders in efficiency demonstrations · Edited by scientists with experience in both research and industry

Book Conjugated Polymers

Download or read book Conjugated Polymers written by John R. Reynolds and published by CRC Press. This book was released on 2019-03-27 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Fourth Edition of the Handbook of Conducting Polymers, Two-Volume Set continues to be the definitive resource on the topic of conducting polymers. Completely updated with an extensive list of authors that draws on past and new contributors, the book takes into account the significant developments both in fundamental understanding and applications since publication of the previous edition. One of two volumes comprising the comprehensive Handbook, Conjugated Polymers: Perspective, Theory, and New Materials features new chapters on the fundamental theory and new materials involved in conducting polymers. It discusses the history of physics and chemistry of these materials and the theory behind them. Finally, it details polymer and materials chemistry including such topics as conjugated block copolymers, metal-containing conjugated polymers, and continuous flow processing. Aimed at researchers, advanced students, and industry professionals working in materials science and engineering, this book covers fundamentals, recent progress, and new materials involved in conducting polymers and includes a wide-ranging listing of comprehensive chapters authored by an international team of experts.

Book Progress in High Efficient Solution Process Organic Photovoltaic Devices

Download or read book Progress in High Efficient Solution Process Organic Photovoltaic Devices written by Yang Yang and published by Springer. This book was released on 2015-02-17 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an important technique to process organic photovoltaic devices. The basics, materials aspects and manufacturing of photovoltaic devices with solution processing are explained. Solution processable organic solar cells - polymer or solution processable small molecules - have the potential to significantly reduce the costs for solar electricity and energy payback time due to the low material costs for the cells, low cost and fast fabrication processes (ambient, roll-to-roll), high material utilization etc. In addition, organic photovoltaics (OPV) also provides attractive properties like flexibility, colorful displays and transparency which could open new market opportunities. The material and device innovations lead to improved efficiency by 8% for organic photovoltaic solar cells, compared to 4% in 2005. Both academic and industry research have significant interest in the development of this technology. This book gives an overview of the booming technology, focusing on the solution process for organic solar cells and provides a state-of-the-art report of the latest developments. World class experts cover fundamental, materials, devices and manufacturing technology of OPV technology.

Book Organic Optoelectronics

Download or read book Organic Optoelectronics written by Wenping Hu and published by John Wiley & Sons. This book was released on 2012-11-05 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by internationally recognized experts in the field with academic as well as industrial experience, this book concisely yet systematically covers all aspects of the topic. The monograph focuses on the optoelectronic behavior of organic solids and their application in new optoelectronic devices. It covers organic field-effect and organic electroluminescent materials and devices, organic photonics, materials and devices, as well as organic solids in photo absorption and energy conversion. Much emphasis is laid on the preparation of functional materials and the fabrication of devices, from materials synthesis and purification, to physicochemical properties and the basic processes and working principles of the devices. The only book to cover fundamentals, applications, and the latest research results, this is a handy reference for both researchers and those new to the field. From the contents: * Electronic process in organic solids * Organic/polymeric semiconductors for field-effect transistors * Organic/polymeric field-effect transistors * Organic circuits and organic single molecular transistors * Polymer light-emitting Diodes (PLEDs): devices and materials * Organic solids for photonics * Organic photonic devices * Organic solar cells based on small molecules * Polymer solar cells * Dye-sensitized solar cells (DSSCs) * Organic thermoelectric power devices

Book Organic Photovoltaics

Download or read book Organic Photovoltaics written by Christoph Brabec and published by John Wiley & Sons. This book was released on 2014-02-20 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt: The versatility of organic photovoltaics is already well known and this completely revised, updated, and enlarged edition of a classic provides an up-to-date overview of this hot topic. The proven structure of the successful first edition, divided into the three key aspects of successful device design: materials, device physics, and manufacturing technologies, has been retained. Important aspects such as printing technologies, substrates, and electrode systems are covered. The result is a balanced, comprehensive text on the fundamentals as well as the latest results in the area that will set R&D trends for years to come. With its combination of both academic and commercial technological views, this is an optimal source of information for scientists, engineers, and graduate students already actively working in this field, and looking for comprehensive summaries on specific topics.

Book Printed Electronics

Download or read book Printed Electronics written by Zheng Cui and published by John Wiley & Sons. This book was released on 2016-04-12 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the newly emerged and highly interdisciplinary field of printed electronics • Provides an overview of the latest developments and research results in the field of printed electronics • Topics addressed include: organic printable electronic materials, inorganic printable electronic materials, printing processes and equipments for electronic manufacturing, printable transistors, printable photovoltaic devices, printable lighting and display, encapsulation and packaging of printed electronic devices, and applications of printed electronics • Discusses the principles of the above topics, with support of examples and graphic illustrations • Serves both as an advanced introductory to the topic and as an aid for professional development into the new field • Includes end of chapter references and links to further reading

Book Memoirs of the Institute of Scientific and Industrial Research  Osaka University

Download or read book Memoirs of the Institute of Scientific and Industrial Research Osaka University written by Ōsaka Daigaku. Sangyō Kagaku Kenkyūjo and published by . This book was released on 2015 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Organic Solar Cells

    Book Details:
  • Author : Masahiro Hiramoto
  • Publisher : Springer Nature
  • Release : 2020-12-16
  • ISBN : 981159113X
  • Pages : 271 pages

Download or read book Organic Solar Cells written by Masahiro Hiramoto and published by Springer Nature. This book was released on 2020-12-16 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the essential scientific ideas and breakthroughs in the last three decades for organic solar cells that have realized practical applications. The motivation for publishing this book is to explain how those essential ideas have arisen and to provide a foundation for future progress by target readers—students, novices in the field, and scientists with expertise. The main topics covered in the book include the fundamental principles and history of organic solar cells, blended junction, nanostructure control, photocurrent generation, photovoltage generation, doping, practical organic solar cells, and possible ideas for the future. The editors enthusiastically anticipate the vigorous development of the field of organic solar cells by young scientists of the next generation.

Book Solar Cells

    Book Details:
  • Author : Leonid A. Kosyachenko
  • Publisher : BoD – Books on Demand
  • Release : 2015-10-22
  • ISBN : 9535121847
  • Pages : 400 pages

Download or read book Solar Cells written by Leonid A. Kosyachenko and published by BoD – Books on Demand. This book was released on 2015-10-22 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains chapters in which the problems of modern photovoltaics are considered. The majority of the chapters provide an overview of the results of research and development of different types of solar cells. Such chapters are completed by a justification for a new solar cell structure and technology. Of course, highly effective solar energy conversion is impossible without an in-depth examination of the solar cell components as physical materials. The relations between structural, thermodynamic, and optical properties of the physical material without addressing the band theory of solids are of both theoretical and practical interest. Requirements formulated for the material are also to be used for maximally efficient conversion of solar radiation into useful work.

Book Rational Design of Solar Cells for Efficient Solar Energy Conversion

Download or read book Rational Design of Solar Cells for Efficient Solar Energy Conversion written by Alagarsamy Pandikumar and published by John Wiley & Sons. This book was released on 2018-08-31 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: An interdisciplinary guide to the newest solar cell technology for efficient renewable energy Rational Design of Solar Cells for Efficient Solar Energy Conversion explores the development of the most recent solar technology and materials used to manufacture solar cells in order to achieve higher solar energy conversion efficiency. The text offers an interdisciplinary approach and combines information on dye-sensitized solar cells, organic solar cells, polymer solar cells, perovskite solar cells, and quantum dot solar cells. The text contains contributions from noted experts in the fields of chemistry, physics, materials science, and engineering. The authors review the development of components such as photoanodes, sensitizers, electrolytes, and photocathodes for high performance dye-sensitized solar cells. In addition, the text puts the focus on the design of material assemblies to achieve higher solar energy conversion. This important resource: Offers a comprehensive review of recent developments in solar cell technology Includes information on a variety of solar cell materials and devices, focusing on dye-sensitized solar cells Contains a thorough approach beginning with the fundamental material characterization and concluding with real-world device application. Presents content from researchers in multiple fields of study such as physicists, engineers, and material scientists Written for researchers, scientists, and engineers in university and industry laboratories, Rational Design of Solar Cells for Efficient Solar Energy Conversion offers a comprehensive review of the newest developments and applications of solar cells with contributions from a range of experts in various disciplines.

Book The Consequences of Materials Distribution and Mixing in Bulk Heterojunction Organic Photovoltaic Devices

Download or read book The Consequences of Materials Distribution and Mixing in Bulk Heterojunction Organic Photovoltaic Devices written by Scott Alan Mauger and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic photovoltaics (OPV) hold the potential to provide low-cost solar energy. OPV devices consist of several stacked layers with the active layer responsible for photon absorption. In a bulk heterojunction (BHJ) active layer, a hole-conducting polymer is intimately mixed with an electron-conducting fullerene. While many device properties are due to the bulk properties of the BHJ, the interactions between the BHJ layer and its surrounding layers also influence device electrical performance. Using multiple techniques including spectroscopic ellipsometry, neutron reflectometry, and near edge x-ray absorption fine structure spectroscopy it is shown that mixing between the BHJ and surrounding layers and the distribution of materials within the layers impact device performance metrics such as open circuit voltage (V(oc)), short circuit current density (J(sc)), and fill factor (FF). First, in a conventional device architecture, at the interface between the BHJ and the underlying poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) hole transport layer (HTL), heating is found to cause mixing and an electrochemical reaction between PEDOT:PSS and the donor polymer poly(3-hexylthiophene) (P3HT), which increases selectivity as seen by increases in V(oc) and compensation voltage. However, in an inverted device architecture this interaction does not occur because of the low PSS concentration on the bottom of the PEDOT:PSS layer. Next, a new HTL polymer is characterized and a poly-fluorinated ionomer (PFI) is used to create a thermally stable, high work function HTL. This high work function HTL is used to achieve improved energy level alignment with the large ionization potential (IP) of low-band-gap polymers. This results in increased V(oc), but J(sc), FF, and ultimately device power conversion efficiency are decreased. Finally, we investigate the role of interfaces on the vertical distribution of materials in the BHJ. High surface energy materials result in an interface that is fullerene rich. With heating, the surface energies of the adjacent layers cause a redistribution of materials in the BHJ. Additionally, metals with a work function equal to or smaller than the electron affinity (EA) of the acceptor fullerene are found to donate charge to the fullerene at the BHJ/cathode interface improving charge selectivity and power conversion efficiency.