EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Bridge Scour Monitoring Methods at Three Sites in Wisconsin

Download or read book Bridge Scour Monitoring Methods at Three Sites in Wisconsin written by J. F. Walker and published by . This book was released on 2005 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt: Of the nearly 11,500 bridges in Wisconsin, 89 have been assessed with critical scour conditions. The U.S. Geological Survey, in cooperation with the Wisconsin Department of Transportation, the Marathon County Highway Department, and the Jefferson County Highway Department, performed routine monitoring of streambed elevations for three bridges. Two monitoring approaches were employed: (1) manual monitoring using moderately simple equipment, and (2) automated monitoring, using moderately sophisticated electronic equipment. The results from all three sites demonstrate that both techniques can produce reasonable measurements of streambed elevation. The manual technique has a lower annual operating cost, and is useful for cases where documentation of long-term trends is desired. The automated technique has a higher annual operating cost and is useful for real-time monitoring of episodic events with short time durations.

Book Evaluation of Bridge Scour Monitoring Methods

Download or read book Evaluation of Bridge Scour Monitoring Methods written by Joseph C. Davis and published by . This book was released on 2003 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Monitoring Scour Critical Bridges

Download or read book Monitoring Scour Critical Bridges written by Beatrice E. Hunt and published by Transportation Research Board. This book was released on 2009 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scour Monitoring Technology Implementation

Download or read book Scour Monitoring Technology Implementation written by and published by . This book was released on 2014 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridge scour is the removal of sediment around bridge foundations and can result in the failure of the bridge. Scour monitoring is performed to identify unacceptable scour on bridges considered to be scour critical and determine when scour reaches elevations that could cause potential bridge failure. Two types of monitoring are available: portable monitoring and fixed monitoring. Prior to this project, MnDOT was only using portable monitoring devices, which requires the deployment of personnel to make physical measurements of scour depths. For some scour critical bridges, especially during high-water events, fixed instrumentation capable of continuous scour monitoring was preferred, but MnDOT lacked the experience or expertise to install this type of equipment. This project installed fixed monitoring equipment at two bridge sites and monitored them for three years to determine the effectiveness and reliability of fixed scour monitoring deployments. Several device options were installed to allow MnDOT to analyze the installation and performance of different types of sensors. Both systems operated for the three years with some outages due to various causes but overall performance was acceptable. The outages were mostly related to power issues and communication issues. Valuable lessons were learned through the deployment, which may be applied to future installations. The deployment executed in this project has provided the confidence to deploy other fixed scour monitoring equipment at key bridges around the state of Minnesota. In addition, the data collected during deployment of the scour monitoring equipment has been stored and provides insight into scour processes. This data can be used by other research groups for design or research purposes.

Book Bridge Scour Monitoring Technologies

Download or read book Bridge Scour Monitoring Technologies written by Matthew Lueker and published by . This book was released on 2010 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridge failure or loss of structural integrity can result from scour of riverbed sediment near bridge abutments or piers during high-flow events in rivers. In the past 20 years, several methods of monitoring bridge scour have been developed spanning a range of measurement approaches, complexities, costs, robustness, and measurement resolutions. This project brings together the expertise of Minnesota Department of Transportation (Mn/DOT) bridge engineers and researchers, university hydraulic and electrical engineers, field staff, and inspectors to take the first steps toward development of robust scour monitoring for Minnesota river bridges. The team worked with Mn/DOT engineers to identify variables of scour critical bridges that affect the application of scour monitoring technology. The research team will used this information to develop a Scour Monitoring Decision Framework (SMDF) that will aid Mn/DOT in selecting the best technologies for specific sites. The final component of the project will involve testing the SMDF on five bridges in a case-study type demonstration; work plans for two of the sites were developed for demonstration of deployed instrumentation.

Book Field Monitoring of Scour Critical Bridges

Download or read book Field Monitoring of Scour Critical Bridges written by Xiong Yu and published by . This book was released on 2010 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scour is a major threat to the safety of bridges. Instruments for the measurement and monitoring of bridge scour are necessary to study scour processes and to support bridge management. The lack of robust and economical scour monitoring devices prevents the implementation of a bridge scour monitoring program among bridge owners. This project explores the design and analyses of scour sensors using principles of Time Domain Reflectometry (TDR). The performance of a scour probe was first tested in laboratory simulated scour experiments. Three different signal analyses methods were developed to obtain the scour depth from TDR signals. Besides scour depth, additional information related to scour assessment, i.e. sediment density and electrical conductivity of water, were also determined from TDR signals. The sensing principles and analysis algorithms were validated from simulated scour tests under various conditions which are expected to be encountered in the field. The field conditions considered included: variation of sediment types, water conductivity, turbidity, air entrapment, and water elevation. These further validated the robustness of the scour sensing principles. Upon validation, a field worthy sensor was designed. The sampling area and effective measured dielectric constant were determined using a finite element analysis method. Evaluation of the sensor indicated that it was able to successfully monitor the scour processes (scour and refill) in real-time with high accuracy. Six TDR bridge scour sensors were installed at BUT-122-0606 bridge on SR 122 over the Great Miami River in Butler County, with assistance of project partners GRL Engineers Inc., and J&L Laboratories. Automatic monitoring units were installed to automatically take scour sensor signals and wirelessly transmit the sensor data. The sensors were installed using routine geotechnical site investigation tools and procedures. High quality signals were obtained, from which the development of scour adjacent to bridge piers was measured. The results are reasonable. The pilot study points to the promise of this new technology for long term bridge scour monitoring purposes. Continued evaluation and refinement of this new scour monitoring sensor system is highly recommended.

Book Portable Scour Monitoring Equipment

Download or read book Portable Scour Monitoring Equipment written by James Douglas Schall and published by Transportation Research Board. This book was released on 2004 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction and research approach -- Findings -- Interpretation, appraisal, and applications -- Conclusions and suggested research -- References -- Appendixes.

Book Developing a Bridge Scour Warning System

Download or read book Developing a Bridge Scour Warning System written by C. Bryan Young and published by . This book was released on 2016 with total page 37 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flooding and scour can be major threats to the integrity of bridges. During flood events, scour at bridge piers and abutments can undermine the foundations of the bridge, causing significant damage or even total structure loss. Because scour occurs below the water level during a large flood event, it can be difficult to detect and may go unnoticed unless a targeted inspection is performed. The Kansas Department of Transportation (KDOT) is required by federal mandate to establish and maintain a bridge scour plan of action for all scour-critical bridges in the state. A plan of action can include the implementation of scour countermeasures to protect and stabilize a bridge and/or scour monitoring. Bridge scour monitoring presents multiple challenges for bridge owners, including state Departments of Transportation (DOTs). This research project surveyed in situ and ex situ monitoring options with particular attention on warning system options in the public domain. In situ monitoring can include portable and/or fixed devices for detecting bridge scour. Ex situ monitoring implies a statewide system that issues scour alerts to trigger bridge closures and/or inspections based on hydrologic conditions (rainfall and/or streamflow). A systematic statewide system would be preferable for monitoring scour-capable events at bridges across the state. KDOT could leverage existing United States Geological Survey (USGS) and National Weather Service (NWS) tools to monitor scour-critical bridges or pursue a vendor to offer a turn-key solution. For critical locations, additional measures could be implemented at specific sites to offer more information or a higher level of monitoring.

Book Bridge Scour and Stream Instability Countermeasures

Download or read book Bridge Scour and Stream Instability Countermeasures written by U.s. Department of Transportation and published by CreateSpace. This book was released on 2015-03-10 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This publication identifies and provides design guidelines for bridge scour and stream instability countermeasures that have been implemented by various State departments of transportation (DOTs) in the United States. Countermeasure experience, selection, and design guidance are consolidated from other FHWA publications in this document to support a comprehensive analysis of scour and stream instability problems and provide a range of solutions to those problems. Selected innovative countermeasure concepts and guidance derived from practice outside the United States are introduced. Management strategies and guidance for developing a Plan of Action for scour critical bridges are outlined, and guidance is provided for scour monitoring using portable and fixed instrumentation. The results of recently completed National Cooperative Highway Research Program (NCHRP) projects are incorporated in the design guidance, including: countermeasures to protect bridge piers and abutments from scour; riprap design criteria, specifications, and quality control; and environmentally sensitive channel and bank protection measures. This additional material required expanding HEC-23 to two volumes. Volume 1 now contains a complete chapter on riprap design, specifications, and quality control as well as an expanded chapter on biotechnical countermeasures. The guidance on scour monitoring instrumentation has been updated and now includes additional installation case studies. Volume 2 contains 19 detailed design guidelines grouped into six categories, including countermeasures for: (1) stream instability (2) streambank and roadway embankment protection, (3) bridge pier protection, (4) abutment protection, (5) filter design, and (6) special applications.

Book Physical Modeling of Local Scour Around Complex Bridge Piers

Download or read book Physical Modeling of Local Scour Around Complex Bridge Piers written by Seung Oh Lee and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Local scour around bridge foundations has been recognized as one of the main causes of bridge failures. The objective of this study is to investigate the relationships among field, laboratory, and numerical data for the purpose of improving scour prediction methods for complex bridge piers. In this study, three field sites in Georgia were selected for continuous monitoring and associated laboratory models were fabricated with physical scale ratios that modeled the full river and bridge cross sections to consider the effect of river bathymetry and bridge geometry. Three different sizes of sediment and several geometric scales of the bridge pier models were used in this study to investigate the scaling effect of relative sediment size, which is defined as the ratio of the pier width to the median sediment size. The velocity field for each bridge model was measured by the acoustic Doppler velocimeter (ADV) to explain the complicated hydrodynamics of the flow field around bridge piers as guided by the results from a numerical model. In each physical model with river bathymetry, the comparison between the results of laboratory experiments and the measurements of prototype bridge pier scour showed good agreement for the maximum pier scour depth at the nose of the pier as well as for the velocity distribution upstream of each bridge pier bent. Accepted scour prediction formulae were evaluated by comparison with extensive laboratory and field data. The effect of relative sediment size on the local pier scour depth was examined and a modified relationship between the local pier scour depth and the relative sediment size was presented. A useful methodology for designing physical models was developed to reproduce and predict local scour depth around complex piers considering Froude number similarity, flow intensity, and relative sediment size.

Book Bridge Scour and Stream Instability Countermeasures

Download or read book Bridge Scour and Stream Instability Countermeasures written by U.s. Department of Transportation and published by CreateSpace. This book was released on 2015-03-10 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This publication identifies and provides design guidelines for bridge scour and stream instability countermeasures that have been implemented by various State departments of transportation (DOTs) in the United States. Countermeasure experience, selection, and design guidance are consolidated from other FHWA publications in this document to support a comprehensive analysis of scour and stream instability problems and provide a range of solutions to those problems. Selected innovative countermeasure concepts and guidance derived from practice outside the United States are introduced. Management strategies and guidance for developing a Plan of Action for scour critical bridges are outlined, and guidance is provided for scour monitoring using portable and fixed instrumentation. The results of recently completed National Cooperative Highway Research Program (NCHRP) projects are incorporated in the design guidance, including: countermeasures to protect bridge piers and abutments from scour; riprap design criteria, specifications, and quality control; and environmentally sensitive channel and bank protection measures. This additional material required expanding HEC-23 to two volumes. Volume 1 now contains a complete chapter on riprap design, specifications, and quality control as well as an expanded chapter on biotechnical countermeasures. The guidance on scour monitoring instrumentation has been updated and now includes additional installation case studies. Volume 2 contains 19 detailed design guidelines grouped into six categories, including countermeasures for: (1) stream instability (2) streambank and roadway embankment protection, (3) bridge pier protection, (4) abutment protection, (5) filter design, and (6) special applications.

Book A Vibration based Bridge Scour Monitoring Technique

Download or read book A Vibration based Bridge Scour Monitoring Technique written by Kasun Kariyawasam Katukoliha Gamage and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Sensor Development and Response Analysis for Bridge Scour Monitoring and Prognosis

Download or read book Sensor Development and Response Analysis for Bridge Scour Monitoring and Prognosis written by Faezeh Azhari and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridges, as well as off-shore wind turbines and other marine structures, are susceptible to failures due to local scour, which is a dynamic phenomenon that is caused by flowing water removing the bed material from around piles, piers, and abutments. If extended over a critical depth, scour can jeopardize the stability and safety of overwater bridges. In fact, scour is the predominant cause of overwater bridge failures in North America and around the world. Monitoring, as part of bridge maintenance, can prevent scour-induced damage and failure by continuously measuring the extent of scour so that preventative measures can be taken in a timely manner. Over the years, numerous sensing systems have been developed for monitoring bridge scour by measuring scour depth at locations near bridge piers and abutments. Due to the limitations of periodic inspections conducted by trained divers and by using portable instruments, fixed monitoring systems have become the viable solution. Existing fixed scour sensors include sonar systems, float-out devices, and tilt meters, to name a few. These systems each offer unique advantages, but have limitations (e.g., high costs, low reliability, limited accuracy, etc.) that have restricted their implementation in practice. Therefore, attempts to develop more efficient monitoring schemes continue. In this study two novel scour sensing schemes were evaluated. The first uses driven piezoelectric rods to continuously measure scour depth; and in the second, buried dissolved oxygen (DO) optodes detect scour at discrete depths. Laboratory flume experiments were conducted to validate the proposed sensing systems. In the first sensing scheme, piezoelectric rods are driven into the stream bed at a location where scour depths are wanted. As the scour hole extends, the exposed length of the rod changes, causing the flow-induced voltage signal acquired from the sensor to also vary. Scour depth at the sensor location is determined based on the fact that the natural frequency of the cantilevered sensing rod is inversely related to its length. Prototype piezoelectric rods, in which a poly(vinylidene fluoride) (PVDF) polymer strip forms the main sensing component, were designed and developed. Following various preliminary validation tests, extensive laboratory experiments were performed in which the in-house piezoelectric sensing rods were driven into the soil surrounding a mock bridge pier inside a flume simulating scour conditions. The piezo-sensor was calibrated through eigenfrequency analyses. The second sensing system utilized commercially available miniature DO probes. DO levels are very low in streambed sediments, as compared to the standard level of oxygen in flowing water. Therefore, scour depths can be determined by installing sensors to monitor DO levels at various depths along the buried length of a bridge pier or abutment. The measured DO is negligible when a sensor is buried but would increase significantly once scour occurs and exposes the sensor to flowing water. A set of experiments was conducted in which four dissolved oxygen probes were embedded at different soil depths in the vicinity of a mock bridge pier inside a laboratory flume simulating scour conditions. The measured DO jumped to water DO levels once scour exposed the sensing tip of the probes to flowing water, thereby providing discrete measurements of the maximum scour depth. The sensing concepts behind both scour monitoring schemes were confirmed through comparing the detected and observed scour depths. The PVDF-based sensors provide continuous scour depth measurements, as opposed to discrete ones offered by the DO sensing system. Both sensing schemes were also able to detect any subsequent refilling of the scour hole through the deposition of sediments. Following separate analyses of the results, future research is suggested for the two sensing techniques to gain a better understanding of their advantages, shortcomings, and potential applications. In addition to developing and validating the aforementioned scour sensing schemes, research was conducted aimed at creating a practical warning-time based framework for scour sensor response interpretation. First, the general form of the framework, applicable to a wide range of damage detection operations, was developed. The purpose of structural health monitoring (SHM) is to diagnose any damage or malfunction in an engineering system in a timely manner. Timely detection implies that sufficient warning time is given to perform required maintenance to prevent structural failure. Warning time information is therefore very useful in the design and planning of maintenance procedures. The framework developed as part of this research, is a simple and practical tool for predicting warning times given detected damage (i.e. sensor outputs). The framework incorporates a probabilistic analysis of damage progression such that the uncertainty in warning times can also be determined and used for risk-based decision making. To demonstrate the framework’s applicability to scour monitoring, a detailed example was considered, where the progression of bridge scour was obtained through computational fluid dynamics (CFD) simulations using the software Flow-3D. The resulting diagrams from the framework can be used as an effective tool in estimating the warning time and the uncertainty in the warning time given a detected scour depth. The warning information is extremely useful in identifying and planning the required maintenance procedures based on the available resources.

Book Monitoring of Bridge Stability Due to Scour Using Remote and Low cost Optical Sensors

Download or read book Monitoring of Bridge Stability Due to Scour Using Remote and Low cost Optical Sensors written by Mohamed Saafi and published by . This book was released on 2008 with total page 51 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scour is the erosion of the stream and banks near foundations, piers and abutments of a bridge which is also referred to as bridge scour. Scour of the bed near bridge piers and abutments has resulted in more bridge failures than all other causes in recent years. Highway bridge failures cost millions of dollars each year as a result of both direct costs necessary to replace and restore bridges, and indirect costs related to disruption of transportation facilities. There are two issues associated with such scour induced damage to bridge pier footings. The first effect is the loss of foundation material which exposes the footing and lowers its factor of safety with regard to sliding or lateral deformation. The greatest loss of sediment to scour occurs at high water velocities, such as during floods. Secondly, pier movement may occur as a result of material loss beside and beneath the base of the footing which produces undesired stresses in the bridge structure and ultimately results in structural collapse. Scour can go undetected for many years until a catastrophic disaster occurs. This problem cannot be entirely eliminated, but can be corrected when scour does occur. A major obstacle in correcting this dilemma is determining when and where the crisis is occurring. Many methods have been used in determining whether or not scour is present. Some of these techniques are permanently attached to the structures and others can be transported from bridge to bridge to measure the scour. Also, some of the current procedures cannot work in some conditions and places. Recently, the National Cooperative Highway Research Program (NCHRP) recognized the need of more research activities to develop, test and evaluate instrumentations that would be both technically and economically feasible for use in monitoring maximum scour depth at bridge piers and abutments. The scour monitoring devices should be low cost, reliable, and capable of installation on or near a bridge pier. Therefore, the objective of this project is to develop a low-cost optical system to detect scour. The proposed optical system was developed and evaluated through large scale scour tests. Results indicated that the proposed sensor is capable of detecting scour depth under flood conditions.

Book Selected Water Resources Abstracts

Download or read book Selected Water Resources Abstracts written by and published by . This book was released on 1991 with total page 962 pages. Available in PDF, EPUB and Kindle. Book excerpt: