Download or read book Breast Cancer Classification Using Machine Learning An Empirical Study written by Akor Ugwu and published by GRIN Verlag. This book was released on 2021-05-11 with total page 77 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diploma Thesis from the year 2020 in the subject Medicine - Diagnostics, grade: 3.55, , course: Computer Science, language: English, abstract: The study will classify breast cancers into foremost problems: (Benign tumor and Malignant tumor). A benign tumor is a most cancers does now not invade its surrounding tissue or spread around the host. A malignant tumor is another kind of cancers which can invade its surrounding tissue or spread around the frame of the host. Benign cancers on uncommon event can also surely result in someone’s death, but as a fashionable rule they're no longer nearly as horrific because the malignant cancers. The malignant cancers at the contrary are like those killer bees. In this situation, you do not need to be doing something to them or maybe be everywhere near their hive, they will just spread out and attack you emass – they could even kill the individual if they are extreme enough. Manual manner of cancer category into benign and malignant may be very tedious, susceptible to human error and unnecessarily time consuming. The proposed system while constructed can robotically classify the sort of most cancers into the safe (benign) and also the risky (malignant). This machine plays this role through the usage of machine getting to know algorithm. The following is the extensive of this new system: Classification mistakes could be notably removed, early analysis of disorder, removal of possible human mistakes and the device does no longer die. However, the researcher seeks to detect and assess the class of breast using Machine learning.
Download or read book C4 5 written by J. Ross Quinlan and published by Morgan Kaufmann. This book was released on 1993 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a complete guide to the C4.5 system as implemented in C for the UNIX environment. It contains a comprehensive guide to the system's use, the source code (about 8,800 lines), and implementation notes.
Download or read book Breast Imaging written by Christoph I. Lee and published by Oxford University Press. This book was released on 2018 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Breast Imaging presents a comprehensive review of the subject matter commonly encountered by practicing radiologists and radiology residents in training. This volume includes succinct overviews of breast cancer epidemiology, screening, staging, and treatment; overviews of all imaging modalities including mammography, tomosynthesis, ultrasound, and MRI; step-by-step approaches for image-guided breast interventions; and high-yield chapters organized by specific imaging finding seen on mammography, tomosynthesis, ultrasound, and MRI. Part of the Rotations in Radiology series, this book offers a guided approach to breast imaging interpretation and techniques, highlighting the nuances necessary to arrive at the best diagnosis and management. Each chapter contains a targeted discussion of an imaging finding which reviews the anatomy and physiology, distinguishing features, imaging techniques, differential diagnosis, clinical issues, key points, and further reading. Breast Imaging is a must-read for residents and practicing radiologists seeking a foundation for the essential knowledge base in breast imaging.
Download or read book Discovering Knowledge in Data written by Daniel T. Larose and published by John Wiley & Sons. This book was released on 2005-01-28 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn Data Mining by doing data mining Data mining can be revolutionary-but only when it's done right. The powerful black box data mining software now available can produce disastrously misleading results unless applied by a skilled and knowledgeable analyst. Discovering Knowledge in Data: An Introduction to Data Mining provides both the practical experience and the theoretical insight needed to reveal valuable information hidden in large data sets. Employing a "white box" methodology and with real-world case studies, this step-by-step guide walks readers through the various algorithms and statistical structures that underlie the software and presents examples of their operation on actual large data sets. Principal topics include: * Data preprocessing and classification * Exploratory analysis * Decision trees * Neural and Kohonen networks * Hierarchical and k-means clustering * Association rules * Model evaluation techniques Complete with scores of screenshots and diagrams to encourage graphical learning, Discovering Knowledge in Data: An Introduction to Data Mining gives students in Business, Computer Science, and Statistics as well as professionals in the field the power to turn any data warehouse into actionable knowledge. An Instructor's Manual presenting detailed solutions to all the problems in the book is available online.
Download or read book Soft Computing in Data Analytics written by Janmenjoy Nayak and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume contains original research findings, exchange of ideas and dissemination of innovative, practical development experiences in different fields of soft and advance computing. It provides insights into the International Conference on Soft Computing in Data Analytics (SCDA). It also concentrates on both theory and practices from around the world in all the areas of related disciplines of soft computing. The book provides rapid dissemination of important results in soft computing technologies, a fusion of research in fuzzy logic, evolutionary computations, neural science and neural network systems and chaos theory and chaotic systems, swarm based algorithms, etc. The book aims to cater the postgraduate students and researchers working in the discipline of computer science and engineering along with other engineering branches.
Download or read book Artificial Intelligence in Medicine written by David Riaño and published by Springer. This book was released on 2019-06-19 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, held in Poznan, Poland, in June 2019. The 22 revised full and 31 short papers presented were carefully reviewed and selected from 134 submissions. The papers are organized in the following topical sections: deep learning; simulation; knowledge representation; probabilistic models; behavior monitoring; clustering, natural language processing, and decision support; feature selection; image processing; general machine learning; and unsupervised learning.
Download or read book Deep Learning for Cancer Diagnosis written by Utku Kose and published by Springer Nature. This book was released on 2020-09-12 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores various applications of deep learning to the diagnosis of cancer,while also outlining the future face of deep learning-assisted cancer diagnostics. As is commonly known, artificial intelligence has paved the way for countless new solutions in the field of medicine. In this context, deep learning is a recent and remarkable sub-field, which can effectively cope with huge amounts of data and deliver more accurate results. As a vital research area, medical diagnosis is among those in which deep learning-oriented solutions are often employed. Accordingly, the objective of this book is to highlight recent advanced applications of deep learning for diagnosing different types of cancer. The target audience includes scientists, experts, MSc and PhD students, postdocs, and anyone interested in the subjects discussed. The book can be used as a reference work to support courses on artificial intelligence, medical and biomedicaleducation.
Download or read book Proceedings of 3rd International Conference on Machine Learning Advances in Computing Renewable Energy and Communication written by Anuradha Tomar and published by Springer Nature. This book was released on 2022-09-17 with total page 774 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers selected papers presented at International Conference on Machine Learning, Advances in Computing, Renewable Energy and Communication (MARC 2021), held in Krishna Engineering College, Ghaziabad, India, during 10 – 11 December, 2021. This book discusses key concepts, challenges and potential solutions in connection with established and emerging topics in advanced computing, renewable energy and network communications.
Download or read book Smart Intelligent Computing and Applications written by Suresh Chandra Satapathy and published by Springer. This book was released on 2018-10-01 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings covers advanced and multi-disciplinary research on design of smart computing and informatics. The theme of the book broadly focuses on various innovation paradigms in system knowledge, intelligence and sustainability that may be applied to provide realistic solution to varied problems in society, environment and industries. The volume publishes quality work pertaining to the scope of the conference which is extended towards deployment of emerging computational and knowledge transfer approaches, optimizing solutions in varied disciplines of science, technology and healthcare.
Download or read book The Cross Entropy Method written by Reuven Y. Rubinstein and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rubinstein is the pioneer of the well-known score function and cross-entropy methods. Accessible to a broad audience of engineers, computer scientists, mathematicians, statisticians and in general anyone, theorist and practitioner, who is interested in smart simulation, fast optimization, learning algorithms, and image processing.
Download or read book Machine Learning Concepts Methodologies Tools and Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2011-07-31 with total page 2174 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This reference offers a wide-ranging selection of key research in a complex field of study,discussing topics ranging from using machine learning to improve the effectiveness of agents and multi-agent systems to developing machine learning software for high frequency trading in financial markets"--Provided by publishe
Download or read book Conformal Prediction for Reliable Machine Learning written by Vineeth Balasubramanian and published by Newnes. This book was released on 2014-04-23 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the world apply and adapt the framework, this edited volume brings together these bodies of work, providing a springboard for further research as well as a handbook for application in real-world problems. - Understand the theoretical foundations of this important framework that can provide a reliable measure of confidence with predictions in machine learning - Be able to apply this framework to real-world problems in different machine learning settings, including classification, regression, and clustering - Learn effective ways of adapting the framework to newer problem settings, such as active learning, model selection, or change detection
Download or read book Advances in Automation Signal Processing Instrumentation and Control written by Venkata Lakshmi Narayana Komanapalli and published by Springer Nature. This book was released on 2021-03-04 with total page 3212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the select proceedings of the International Conference on Automation, Signal Processing, Instrumentation and Control (i-CASIC) 2020. The book mainly focuses on emerging technologies in electrical systems, IoT-based instrumentation, advanced industrial automation, and advanced image and signal processing. It also includes studies on the analysis, design and implementation of instrumentation systems, and high-accuracy and energy-efficient controllers. The contents of this book will be useful for beginners, researchers as well as professionals interested in instrumentation and control, and other allied fields.
Download or read book Machine Learning and Artificial Intelligence written by J.-L. Kim and published by IOS Press. This book was released on 2022-12-09 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning (ML) and artificial intelligence (AI) applications are now so pervasive that they have become indispensable facilitators which improve the quality of all our daily lives. This book presents the proceeding of MLIS 2022, the 4th International Conference on Machine Learning and Intelligent Systems, held as a virtual event due to the continued uncertainty caused by the Covid-19 pandemic and hosted in Seoul, South Korea from 8 to 11 November 2022. The aim of the annual MLIS conference is to provide a platform for the exchange of the most recent scientific and technological advances in the field of machine learning and intelligent systems, and to strengthen links in the scientific community in related research areas. Scientific topics covered at MLIS 2022 included data mining, image processing, neural networks, natural language processing, video processing, computational intelligence, expert systems, human-computer interaction, deep learning, and robotics. The book contains the 20 papers selected for acceptance after a rigorous peer review process from the more than 90 full papers submitted. Selection criteria were based on originality, scientific/practical significance, compelling logical reasoning and language, and the 20 papers included here all provide either innovative and original ideas or results of general significance in the field of ML and AI. Providing an overview of the latest research and developments in machine learning and artificial intelligence, the book will be of interest to all those working in the field.
Download or read book Applied Machine Learning and Data Analytics written by M. A. Jabbar and published by Springer Nature. This book was released on 2023-05-26 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 5th International Conference on Applied Machine Learning and Data Analytics, AMLDA 2022, held in Reynosa, Tamaulipas, Mexico, during December 22–23, 2022. The 16 full papers and 4 short papers included in this book were carefully reviewed and selected from 89 submissions. They were organized in topical sections as follows: Machine learning, Healthcare and medical imaging informatics; biometrics; forensics; precision agriculture; risk management; robotics and satellite imaging.
Download or read book Artificial Intelligence in Medical Imaging written by Erik R. Ranschaert and published by Springer. This book was released on 2019-01-29 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.
Download or read book Encyclopedia of Data Science and Machine Learning written by Wang, John and published by IGI Global. This book was released on 2023-01-20 with total page 3296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.