Download or read book Partial Differential Equations and Boundary Value Problems with Applications written by Mark A. Pinsky and published by American Mathematical Soc.. This book was released on 2011 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.
Download or read book Linear Partial Differential Equations and Fourier Theory written by Marcus Pivato and published by Cambridge University Press. This book was released on 2010-01-07 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: This highly visual introductory textbook provides a rigorous mathematical foundation for all solution methods and reinforces ties to physical motivation.
Download or read book Student Solutions Manual Partial Differential Equations Boundary Value Problems with Maple written by George A. Articolo and published by Academic Press. This book was released on 2009-07-22 with total page 733 pages. Available in PDF, EPUB and Kindle. Book excerpt: Student Solutions Manual, Partial Differential Equations & Boundary Value Problems with Maple
Download or read book Partial Differential Equations written by T. Hillen and published by FriesenPress. This book was released on 2019-05-15 with total page 683 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides more than 150 fully solved problems for linear partial differential equations and boundary value problems. Partial Differential Equations: Theory and Completely Solved Problems offers a modern introduction into the theory and applications of linear partial differential equations (PDEs). It is the material for a typical third year university course in PDEs. The material of this textbook has been extensively class tested over a period of 20 years in about 60 separate classes. The book is divided into two parts. Part I contains the Theory part and covers topics such as a classification of second order PDEs, physical and biological derivations of the heat, wave and Laplace equations, separation of variables, Fourier series, D’Alembert’s principle, Sturm-Liouville theory, special functions, Fourier transforms and the method of characteristics. Part II contains more than 150 fully solved problems, which are ranked according to their difficulty. The last two chapters include sample Midterm and Final exams for this course with full solutions.
Download or read book Linear Partial Differential Equations for Scientists and Engineers written by Tyn Myint-U and published by Springer Science & Business Media. This book was released on 2007-04-05 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt: This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books. It also contains a large number of worked examples and exercises dealing with problems in fluid mechanics, gas dynamics, optics, plasma physics, elasticity, biology, and chemistry; solutions are provided.
Download or read book Basic Linear Partial Differential Equations written by François Treves and published by Academic Press. This book was released on 1975-08-08 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: Basic Linear Partial Differential Equations
Download or read book Applied Differential Equations with Boundary Value Problems written by Vladimir Dobrushkin and published by CRC Press. This book was released on 2017-10-19 with total page 1225 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Differential Equations with Boundary Value Problems presents a contemporary treatment of ordinary differential equations (ODEs) and an introduction to partial differential equations (PDEs), including their applications in engineering and the sciences. This new edition of the author’s popular textbook adds coverage of boundary value problems. The text covers traditional material, along with novel approaches to mathematical modeling that harness the capabilities of numerical algorithms and popular computer software packages. It contains practical techniques for solving the equations as well as corresponding codes for numerical solvers. Many examples and exercises help students master effective solution techniques, including reliable numerical approximations. This book describes differential equations in the context of applications and presents the main techniques needed for modeling and systems analysis. It teaches students how to formulate a mathematical model, solve differential equations analytically and numerically, analyze them qualitatively, and interpret the results.
Download or read book Analytical Solution Methods for Boundary Value Problems written by A.S. Yakimov and published by Academic Press. This book was released on 2016-08-13 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analytical Solution Methods for Boundary Value Problems is an extensively revised, new English language edition of the original 2011 Russian language work, which provides deep analysis methods and exact solutions for mathematical physicists seeking to model germane linear and nonlinear boundary problems. Current analytical solutions of equations within mathematical physics fail completely to meet boundary conditions of the second and third kind, and are wholly obtained by the defunct theory of series. These solutions are also obtained for linear partial differential equations of the second order. They do not apply to solutions of partial differential equations of the first order and they are incapable of solving nonlinear boundary value problems. Analytical Solution Methods for Boundary Value Problems attempts to resolve this issue, using quasi-linearization methods, operational calculus and spatial variable splitting to identify the exact and approximate analytical solutions of three-dimensional non-linear partial differential equations of the first and second order. The work does so uniquely using all analytical formulas for solving equations of mathematical physics without using the theory of series. Within this work, pertinent solutions of linear and nonlinear boundary problems are stated. On the basis of quasi-linearization, operational calculation and splitting on spatial variables, the exact and approached analytical solutions of the equations are obtained in private derivatives of the first and second order. Conditions of unequivocal resolvability of a nonlinear boundary problem are found and the estimation of speed of convergence of iterative process is given. On an example of trial functions results of comparison of the analytical solution are given which have been obtained on suggested mathematical technology, with the exact solution of boundary problems and with the numerical solutions on well-known methods. - Discusses the theory and analytical methods for many differential equations appropriate for applied and computational mechanics researchers - Addresses pertinent boundary problems in mathematical physics achieved without using the theory of series - Includes results that can be used to address nonlinear equations in heat conductivity for the solution of conjugate heat transfer problems and the equations of telegraph and nonlinear transport equation - Covers select method solutions for applied mathematicians interested in transport equations methods and thermal protection studies - Features extensive revisions from the Russian original, with 115+ new pages of new textual content
Download or read book A Unified Approach to Boundary Value Problems written by Athanassios S. Fokas and published by SIAM. This book was released on 2008-01-01 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a new approach to analysing initial-boundary value problems for integrable partial differential equations.
Download or read book Elementary Differential Equations with Boundary Value Problems written by William F. Trench and published by Thomson Brooks/Cole. This book was released on 2001 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written in a clear and accurate language that students can understand, Trench's new book minimizes the number of explicitly stated theorems and definitions. Instead, he deals with concepts in a conversational style that engages students. He includes more than 250 illustrated, worked examples for easy reading and comprehension. One of the book's many strengths is its problems, which are of consistently high quality. Trench includes a thorough treatment of boundary-value problems and partial differential equations and has organized the book to allow instructors to select the level of technology desired. This has been simplified by using symbols, C and L, to designate the level of technology. C problems call for computations and/or graphics, while L problems are laboratory exercises that require extensive use of technology. Informal advice on the use of technology is included in several sections and instructors who prefer not to emphasize technology can ignore these exercises without interrupting the flow of material.
Download or read book Partial Differential Equations written by Thomas Hillen and published by John Wiley & Sons. This book was released on 2014-08-21 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uniquely provides fully solved problems for linear partial differential equations and boundary value problems Partial Differential Equations: Theory and Completely Solved Problems utilizes real-world physical models alongside essential theoretical concepts. With extensive examples, the book guides readers through the use of Partial Differential Equations (PDEs) for successfully solving and modeling phenomena in engineering, biology, and the applied sciences. The book focuses exclusively on linear PDEs and how they can be solved using the separation of variables technique. The authors begin by describing functions and their partial derivatives while also defining the concepts of elliptic, parabolic, and hyperbolic PDEs. Following an introduction to basic theory, subsequent chapters explore key topics including: • Classification of second-order linear PDEs • Derivation of heat, wave, and Laplace’s equations • Fourier series • Separation of variables • Sturm-Liouville theory • Fourier transforms Each chapter concludes with summaries that outline key concepts. Readers are provided the opportunity to test their comprehension of the presented material through numerous problems, ranked by their level of complexity, and a related website features supplemental data and resources. Extensively class-tested to ensure an accessible presentation, Partial Differential Equations is an excellent book for engineering, mathematics, and applied science courses on the topic at the upper-undergraduate and graduate levels.
Download or read book Unified Transform for Boundary Value Problems written by Athanasios S. Fokas and published by SIAM. This book was released on 2014-12-30 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes state-of-the-art advances and applications of the unified transform and its relation to the boundary element method. The authors present the solution of boundary value problems from several different perspectives, in particular the type of problems modeled by partial differential equations (PDEs). They discuss recent applications of the unified transform to the analysis and numerical modeling of boundary value problems for linear and integrable nonlinear PDEs and the closely related boundary element method, a well-established numerical approach for solving linear elliptic PDEs.? The text is divided into three parts. Part I contains new theoretical results on linear and nonlinear evolutionary and elliptic problems. New explicit solution representations for several classes of boundary value problems are constructed and rigorously analyzed. Part II is a detailed overview of variational formulations for elliptic problems. It places the unified transform approach in a classic context alongside the boundary element method and stresses its novelty. Part III presents recent numerical applications based on the boundary element method and on the unified transform.
Download or read book Handbook of Linear Partial Differential Equations for Engineers and Scientists written by Andrei D. Polyanin and published by CRC Press. This book was released on 2001-11-28 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following in the footsteps of the authors' bestselling Handbook of Integral Equations and Handbook of Exact Solutions for Ordinary Differential Equations, this handbook presents brief formulations and exact solutions for more than 2,200 equations and problems in science and engineering. Parabolic, hyperbolic, and elliptic equations with
Download or read book Boundary Value Problems written by David L. Powers and published by Elsevier. This book was released on 2014-05-10 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boundary Value Problems is a text material on partial differential equations that teaches solutions of boundary value problems. The book also aims to build up intuition about how the solution of a problem should behave. The text consists of seven chapters. Chapter 1 covers the important topics of Fourier Series and Integrals. The second chapter deals with the heat equation, introducing separation of variables. Material on boundary conditions and Sturm-Liouville systems is included here. Chapter 3 presents the wave equation; estimation of eigenvalues by the Rayleigh quotient is mentioned briefly. The potential equation is the topic of Chapter 4, which closes with a section on classification of partial differential equations. Chapter 5 briefly covers multidimensional problems and special functions. The last two chapters, Laplace Transforms and Numerical Methods, are discussed in detail. The book is intended for third and fourth year physics and engineering students.
Download or read book Ordinary and Partial Differential Equations written by Ravi P. Agarwal and published by Springer Science & Business Media. This book was released on 2008-11-13 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this undergraduate/graduate textbook, the authors introduce ODEs and PDEs through 50 class-tested lectures. Mathematical concepts are explained with clarity and rigor, using fully worked-out examples and helpful illustrations. Exercises are provided at the end of each chapter for practice. The treatment of ODEs is developed in conjunction with PDEs and is aimed mainly towards applications. The book covers important applications-oriented topics such as solutions of ODEs in form of power series, special functions, Bessel functions, hypergeometric functions, orthogonal functions and polynomials, Legendre, Chebyshev, Hermite, and Laguerre polynomials, theory of Fourier series. Undergraduate and graduate students in mathematics, physics and engineering will benefit from this book. The book assumes familiarity with calculus.
Download or read book A Course in Differential Equations with Boundary Value Problems written by Stephen A. Wirkus and published by CRC Press. This book was released on 2017-01-24 with total page 788 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Course in Differential Equations with Boundary Value Problems, 2nd Edition adds additional content to the author’s successful A Course on Ordinary Differential Equations, 2nd Edition. This text addresses the need when the course is expanded. The focus of the text is on applications and methods of solution, both analytical and numerical, with emphasis on methods used in the typical engineering, physics, or mathematics student’s field of study. The text provides sufficient problems so that even the pure math major will be sufficiently challenged. The authors offer a very flexible text to meet a variety of approaches, including a traditional course on the topic. The text can be used in courses when partial differential equations replaces Laplace transforms. There is sufficient linear algebra in the text so that it can be used for a course that combines differential equations and linear algebra. Most significantly, computer labs are given in MATLAB®, Mathematica®, and MapleTM. The book may be used for a course to introduce and equip the student with a knowledge of the given software. Sample course outlines are included. Features MATLAB®, Mathematica®, and MapleTM are incorporated at the end of each chapter All three software packages have parallel code and exercises There are numerous problems of varying difficulty for both the applied and pure math major, as well as problems for engineering, physical science and other students. An appendix that gives the reader a "crash course" in the three software packages Chapter reviews at the end of each chapter to help the students review Projects at the end of each chapter that go into detail about certain topics and introduce new topics that the students are now ready to see Answers to most of the odd problems in the back of the book
Download or read book Perturbation of the Boundary in Boundary Value Problems of Partial Differential Equations written by Dan Henry and published by Cambridge University Press. This book was released on 2005-05-26 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perturbation of the boundary is a rather neglected topic in the study of partial differential equations, in part because it often entails long and difficult caluclations. In this book, first published in 2005, the author carefully discusses a calculus that overcomes the computational morass, and he goes on to develop more general forms of standard theorems, helping to answer a problems involving boundary perturbations.