EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Boundary Plasma Turbulence Simulations for Tokamaks

Download or read book Boundary Plasma Turbulence Simulations for Tokamaks written by and published by . This book was released on 2008 with total page 41 pages. Available in PDF, EPUB and Kindle. Book excerpt: The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.

Book Workshop  Langzeitverf  gbarkeit digitaler Dokumente   Erarbeitung eines ersten kooperativen Konzepts f  r Deutschland  mit Unterst  tzung des Bundesministeriums f  r Bildung und Forschung

Download or read book Workshop Langzeitverf gbarkeit digitaler Dokumente Erarbeitung eines ersten kooperativen Konzepts f r Deutschland mit Unterst tzung des Bundesministeriums f r Bildung und Forschung written by Deutsche Bibliothek and published by . This book was released on 2002 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Theory and Fluid Simulations of Boundary Plasma Fluctuations

Download or read book Theory and Fluid Simulations of Boundary Plasma Fluctuations written by and published by . This book was released on 2007 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical and computational investigations are presented of boundary plasma microturbulence that take into account important effects of the geometry of diverted tokamaks--in particular, the effect of x-point magnetic shear and the termination of field lines on divertor plates. We first generalize our previous 'heuristic boundary condition' which describes, in a lumped model, the closure of currents in the vicinity of the x-point region to encompass three current-closure mechanisms. We then use this boundary condition to derive the dispersion relation for low-beta flute-like modes in the divertor-leg region under the combined drives of curvature, sheath impedance, and divertor tilt effects. The results indicate the possibility of strongly growing instabilities, driven by sheath boundary conditions, and localized in either the private or common flux region of the divertor leg depending on the radial tilt of divertor plates. We re-visit the issue of x-point effects on blobs, examining the transition from blobs terminated by x-point shear to blobs that extend over both the main SOL and divertor legs. We find that, for a main-SOL blob, this transition occurs without a free-acceleration period as previously thought, with x-point termination conditions applying until the blob has expanded to reach the divertor plate. We also derive propagation speeds for divertor-leg blobs. Finally, we present fluid simulations of the C-Mod tokamak from the BOUT edge fluid turbulence code, which show main-SOL blob structures with similar spatial characteristics to those observed in the experiment, and also simulations which illustrate the possibility of fluctuations confined to divertor legs.

Book Simulation of Plasma Turbulence in the Periphery of Diverted Tokamaks

Download or read book Simulation of Plasma Turbulence in the Periphery of Diverted Tokamaks written by Paola Paruta and published by . This book was released on 2018 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mots-clés de l'auteur: Fusion ; Plasma Physics ; Turbulence ; Blob transport ; Flux-aligned coordinates ; Diverted configuration ; X-point ; Code verification ; Scrape-off layer.

Book The Plasma Boundary of Magnetic Fusion Devices

Download or read book The Plasma Boundary of Magnetic Fusion Devices written by P.C Stangeby and published by CRC Press. This book was released on 2000-01-01 with total page 738 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Plasma Boundary of Magnetic Fusion Devices introduces the physics of the plasma boundary region, including plasma-surface interactions, with an emphasis on those occurring in magnetically confined fusion plasmas. The book covers plasma-surface interaction, Debye sheaths, sputtering, scrape-off layers, plasma impurities, recycling and control, 1D and 2D fluid and kinetic modeling of particle transport, plasma properties at the edge, diverter and limiter physics, and control of the plasma boundary. Divided into three parts, the book begins with Part 1, an introduction to the plasma boundary. The derivations are heuristic and worked problems help crystallize physical intuition, which is emphasized throughout. Part 2 provides an introduction to methods of modeling the plasma edge region and for interpreting computer code results. Part 3 presents a collection of essays on currently active research hot topics. With an extensive bibliography and index, this book is an invaluable first port-of-call for researchers interested in plasma-surface interactions.

Book Lecture Series on Turbulent Transport in Tokamaks

Download or read book Lecture Series on Turbulent Transport in Tokamaks written by Ronald E. Waltz and published by . This book was released on 1987 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Turbulence Studies in Tokamak Boundary Plasmas with Realistic Divertor Geometry

Download or read book Turbulence Studies in Tokamak Boundary Plasmas with Realistic Divertor Geometry written by and published by . This book was released on 1998 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT [1] and the linearized shooting code BAL[2] to study turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant, resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the ExB drift speed, ion diamagnetism and finite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters.

Book Magnetic Fluctuations in Gyrokinetic Simulations of Tokamak Scrape Off Layer Turbulence

Download or read book Magnetic Fluctuations in Gyrokinetic Simulations of Tokamak Scrape Off Layer Turbulence written by Noah Roth Mandell and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding turbulent transport physics in the tokamak edge and scrape-off layer (SOL) is critical to developing a successful fusion reactor. The dynamics in these regions plays a key role in achieving high fusion performance by determining the edge pedestal that suppresses turbulence in the high-confinement mode (H-mode). Additionally, the survivability of a reactor is set by the heat load to the vessel walls, making it important to understand turbulent spreading of heat as it flows along open magnetic field lines in the SOL. Large-amplitude fluctuations, magnetic X-point geometry, and plasma interactions with material walls make simulating turbulence in the edge/SOL more challenging than in the core region, necessitating specialized gyrokinetic codes. Further, the inclusion of electromagnetic effects in gyrokinetic simulations that can handle the unique challenges of the boundary plasma is critical to the understanding of phenomena such as the pedestal and edge-localized modes, for which electromagnetic dynamics are expected to be important.In this thesis, we develop the first capability to simulate electromagnetic gyrokinetic turbulence on open magnetic field lines. This is an important step towards comprehensive electromagnetic gyrokinetic simulations of the coupled edge/SOL system. By using a continuum full-f approach via an energy-conserving discontinuous Galerkin (DG) discretization scheme that avoids the Ampere cancellation problem, we show that electromagnetic fluctuations can be handled in a robust, stable, and efficient manner in the gyrokinetic module of the Gkeyll code. We then present results which roughly model the scrape-off layer of the National Spherical Torus Experiment (NSTX), and show that electromagnetic effects can affect blob dynamics and transport. We also formulate the gyrokinetic system in field-aligned coordinates for modeling realistic edge and scrape-off layer geometries in experiments. A novel DG algorithm for maintaining positivity of the distribution function while preserving conservation laws is also presented.

Book Free boundary Simulations of MHD Plasma Instabilities in Tokamaks

Download or read book Free boundary Simulations of MHD Plasma Instabilities in Tokamaks written by Francisco Javier Artola Such and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most promising concepts for future fusion reactors is the tokamak. In these devices, a hot ionized plasma is confined with the use of large magnetic fields. The subject of this thesis is the study of a particular type of tokamak instabilities with MagnetoHydroDynamic (MHD) simulations. The code JOREK-STARWALL is adapted and applied to the simulation of the so-called free-boundary instabilities. The investigation of this type of instabilities requires a special treatment for the plasma boundary conditions, where the interaction of the plasma with the vacuum and the surrounding conducting structures needs to be taken into account. In this work, the modelling of the electromagnetic plasma-wall-vacuum interaction is reviewed and generalized for the so-called halo currents. The adapted JOREK-STARWALL code is applied in order to study the physics of two particular free-boundary instabilities: Edge Localized Modes (ELMs) triggered by vertical position oscillations and Vertical Displacement Events (VDEs). Two major results are obtained: 1. The triggering of ELMs during vertical position oscillations is for the first time reproduced with self-consistent simulations. These allow for the investigation of the physical mechanism underlying this phenomenon. The simulations reveal that for the international ITER project, a large-scale tokamak, these triggered ELMs are mainly due to an increase in the plasma edge current due to the vertical plasma motion. 2. For VDEs, several benchmarks are performed with other existing MHD codes showing a good agreement and therefore allowing the performance of ITER simulations to estimate the expected amount of halo currents in ITER.

Book Simulation of Plasma Fluxes to Material Surfaces with Self Consistent Edge Turbulence and Transport for Tokamaks

Download or read book Simulation of Plasma Fluxes to Material Surfaces with Self Consistent Edge Turbulence and Transport for Tokamaks written by and published by . This book was released on 2004 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: The edge-plasma profiles and fluxes to the divertor and walls of a divertor tokamak with a magnetic X-point are simulated by coupling a 2D transport code (UEDGE) and a 3D turbulence code (BOUT). An relaxed iterative coupling scheme is used where each code is run on its characteristic time scale, resulting in a statistical steady state. Plasma variables of density, parallel velocity, and separate ion and electron temperatures are included, together with a fluid neutral model for recycling neutrals at material surfaces. Results for the DIII-D tokamak parameters show that the turbulence is preferentially excited in the outer radial region of the edge where magnetic curvature is destabilizing and that substantial plasma particle flux is transported to the main chamber walls. These results are qualitatively consistent with some experimental observations. The coupled transport/turbulence simulation technique provides a strategy to understanding edge-plasma physics in more detailed than previously available and to significantly enhance the realism of predictions of the performance of future devices.

Book Turbulent Transport Modeling in the Edge Plasma of Tokamaks

Download or read book Turbulent Transport Modeling in the Edge Plasma of Tokamaks written by Clothilde Colin and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The possibility to produce power by using magnetically confined fusion is a scientific and technological challenge. The perspective of ITER conveys strong signals to intensify modeling effort on magnetized fusion plasmas. The success of the fusion operation is conditioned by the quality of plasma confinement in the core of the reactor and by the control of plasma exhaust on the wall. Both phenomena are related to turbulent cross-field transport that is at the heart of the notion of magnetic confinement studies, particle and heat losses. The study of edge phenomena is therefore complicated by a particularly complex magnetic geometry.This calls for an improvement of our capacity to develop numerical tools able to reproduce turbulent transport properties reliable to predict particle and energy fluxes on the plasma facing components. This thesis introduces the TOKAM3X fluid model to simulate edge plasma turbulence. A special focus is made on the code Verification and the Validation. It is a necessary step before using a code as a predictive tool. Then new insights on physical properties of the edge plasma turbulence are explored. In particular, the poloidal asymmetries induced by turbulence and observed experimentally in the Low-Field-Side of the devices are investigated in details. Great care is dedicated to the reproduction of the MISTRAL base case which consists in changing the magnetic configuration and observing the impact on parallel flows in the poloidal plane. The simulations recover experimental measurements and provide new insights on the effect of the plasma-wall contact position location on the turbulent features, which were not accessible in experiments.

Book Simulation of Edge plasma Profiles and Turbulence Related to L H Transitions in Tokamaks

Download or read book Simulation of Edge plasma Profiles and Turbulence Related to L H Transitions in Tokamaks written by and published by . This book was released on 1999 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding plasma profile evolution and plasma turbulence are two important aspects of developing a predictive model for edge-plasma in tokamaks and other fusion-related devices. Here they describe results relevant to the L-H transition phenomena observed in tokamaks obtained from two simulations codes which emphasize the two aspects of the problem. UEDGE solves for the two-dimensional (2-D) profiles of a multi-species plasma and neutrals given some anomalous cross-field diffusion coefficients, and BOUT solves for the three-dimensional (3-D) turbulence that gives rise to the anomalous diffusion. These two codes are thus complementary in solving different aspects of the edge-plasma transport problem; ultimately, they want to couple the codes so that UEDGE uses BOUT's turbulence transport results, and BOUT uses UEDGE's plasma profiles with a fully automated iteration procedure. This goal is beyond the present paper; here they show how each aspect of the problem, i.e., profiles and turbulent transport, can contribute to L-H type transitions.

Book Simulation of Plasma Fluxes to Material Surfaces with Self consistent Edge Turbulence and Transport for Tokamaks

Download or read book Simulation of Plasma Fluxes to Material Surfaces with Self consistent Edge Turbulence and Transport for Tokamaks written by R. Cohen and published by . This book was released on 2004 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt: The edge-plasma profiles and fluxes to the divertor and walls of a divertor tokamak with a magnetic X-point are simulated by coupling a 2D transport code (UEDGE) and a 3D turbulence code (BOUT). An relaxed iterative coupling scheme is used where each code is run on its characteristic time scale, resulting in a statistical steady state. Plasma variables of density, parallel velocity, and separate ion and electron temperatures are included, together with a fluid neutral model for recycling neutrals at material surfaces. Results for the DIII-D tokamak parameters show that the turbulence is preferentially excited in the outer radial region of the edge where magnetic curvature is destabilizing and that substantial plasma particle flux is transported to the main chamber walls. These results are qualitatively consistent with some experimental observations. The coupled transport/turbulence simulation technique provides a strategy to understanding edge-plasma physics in more detailed than previously available and to significantly enhance the realism of predictions of the performance of future devices.

Book Model Reduction for Tokamak Plasma Turbulence

Download or read book Model Reduction for Tokamak Plasma Turbulence written by Camille Gillot and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal control of tokamak plasmas requires efficient and accurate prediction of heat and matter transport. Growing from kinetic resonant instabilities, turbulence saturates by involving many scales, from the small vortex up to the back-reaction on the density and temperature profiles. Self-organisation processes are of particular interest, encompassing spontaneous zonal flow genera- tion and transport by avalanche. First principle numerical simulation codes like GYSELA allow studying the gyro-kinetic evolution of the particle distribution function. The large model size and cost prompts the need for reduction. Removing velocity dimensions is the so-called collisionless closure problem for fluid equations. Earlier approaches are extended and generalised by calling to the dynamical systems and optimal control litterature. In particular, we apply the balanced truncation and rational interpolation to the one-dimensional linear VlasovPoisson problem. The interpolation method features a cheap and versatile formulation, opening the door to wider use for more complex phenomena. Quasi-linear theory is the reference model for turbulent effects. The GYSELA three-dimensional output is analysed to estimate the robustness of linear properties in turbulent filaments. Key quasi-linear quantities carry over to the non-linear regime. Effective velocities and shape of turbulent structures are computed, and match expected group velocities and linear eigenmode. Nevertheless, the turbulent potential spectrum must be specified externally to quasi- linear models. This results in radially travelling unstable linear solutions that share many properties of turbulent avalanches seen in numerical simulations.