Download or read book Discontinuous Systems written by Yury V. Orlov and published by Springer Science & Business Media. This book was released on 2008-10-28 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discontinuous Systems develops nonsmooth stability analysis and discontinuous control synthesis based on novel modeling of discontinuous dynamic systems, operating under uncertain conditions. While being primarily a research monograph devoted to the theory of discontinuous dynamic systems, no background in discontinuous systems is required; such systems are introduced in the book at the appropriate conceptual level. Being developed for discontinuous systems, the theory is successfully applied to their subclasses – variable-structure and impulsive systems – as well as to finite- and infinite-dimensional systems such as distributed-parameter and time-delay systems. The presentation concentrates on algorithms rather than on technical implementation although theoretical results are illustrated by electromechanical applications. These specific applications complete the book and, together with the introductory theoretical constituents bring some elements of the tutorial to the text.
Download or read book Computational Methods for Heat and Mass Transfer written by Pradip Majumdar and published by Taylor & Francis. This book was released on 2005-09-28 with total page 738 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent of high-speed computers has encouraged a growing demand for newly graduated engineers to possess the basic skills of computational methods for heat and mass transfer and fluid dynamics. Computational fluid dynamics and heat transfer, as well as finite element codes, are standard tools in the computer-aided design and analysis of processes.
Download or read book Boundary Control of PDEs written by Miroslav Krstic and published by SIAM. This book was released on 2008-01-01 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: The text's broad coverage includes parabolic PDEs; hyperbolic PDEs of first and second order; fluid, thermal, and structural systems; delay systems; PDEs with third and fourth derivatives in space (including variants of linearized Ginzburg-Landau, Schrodinger, Kuramoto-Sivashinsky, KdV, beam, and Navier-Stokes equations); real-valued as well as complex-valued PDEs; stabilization as well as motion planning and trajectory tracking for PDEs; and elements of adaptive control for PDEs and control of nonlinear PDEs.
Download or read book The One Dimensional Heat Equation written by John Rozier Cannon and published by Cambridge University Press. This book was released on 1984-12-28 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a version of Gevrey's classical treatise on the heat equations. Included in this volume are discussions of initial and/or boundary value problems, numerical methods, free boundary problems and parameter determination problems. The material is presented as a monograph and/or information source book. After the first six chapters of standard classical material, each chapter is written as a self-contained unit except for an occasional reference to elementary definitions, theorems and lemmas in previous chapters.
Download or read book Multigrid Methods written by Stephen F. McCormick and published by SIAM. This book was released on 1987-12-01 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thoughtful consideration of the current level of development of multigrid methods, this volume is a carefully edited collection of papers that addresses its topic on several levels. The first three chapters orient the reader who is familiar with standard numerical techniques to multigrid methods, first by discussing multigrid in the context of standard techniques, second by detailing the mechanics of use of the method, and third by applying the basic method to some current problems in fluid dynamics. The fourth chapter provides a unified development, complete with theory, of algebraic multigrid (AMG), which is a linear equation solver based on multigrid principles. The last chapter is an ambitious development of a very general theory of multigrid methods for variationally posed problems. Included as an appendix is the latest edition of the Multigrid Bibliography, an attempted compilation of all existing research publications on multigrid.
Download or read book Spectral Methods written by Jie Shen and published by Springer Science & Business Media. This book was released on 2011-08-25 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.
Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Download or read book Investigations on the Theory of the Brownian Movement written by Albert Einstein and published by Courier Corporation. This book was released on 1956-01-01 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Five early papers evolve theory that won Einstein a Nobel Prize: "Movement of Small Particles Suspended in a Stationary Liquid Demanded by the Molecular-Kinetic Theory of Heat"; "On the Theory of the Brownian Movement"; "A New Determination of Molecular Dimensions"; "Theoretical Observations on the Brownian Motion"; and "Elementary Theory of the Brownian Motion."
Download or read book New Trends of Mathematical Inverse Problems and Applications written by Amine Laghrib and published by Springer Nature. This book was released on 2023-07-15 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises the thoroughly reviewed and revised papers of the First International Conference on New Trends in Applied Mathematics, ICNTAM 2022, which took place in Béni Mellal, Morocco, 19-21 May 2022. The papers deal with the following topics: Inverse Problems, Partial Differential Equations, Mathematical Control, Numerical Analysis and Computer Science. The main interest is in recent trends on Inverse Problems analysis and real applications in Computer Science. The latter is viewed as a dynamic branch on the interface of mathematics and related fields, that has been growing rapidly over the past several decades. However, its mathematical analysis and interpretation still not well-detailed and needs much more clarifications. The main contribution of this book is to give some sufficient mathematical content with expressive results and accurate applications. As a growing field, it is gaining a lot of attention both in media as well as in the industry world, which will attract the interest of readers from different scientist discipline.
Download or read book Advanced H Control written by Yury V. Orlov and published by Birkhäuser. This book was released on 2014-02-21 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This compact monograph is focused on disturbance attenuation in nonsmooth dynamic systems, developing an H∞ approach in the nonsmooth setting. Similar to the standard nonlinear H∞ approach, the proposed nonsmooth design guarantees both the internal asymptotic stability of a nominal closed-loop system and the dissipativity inequality, which states that the size of an error signal is uniformly bounded with respect to the worst-case size of an external disturbance signal. This guarantee is achieved by constructing an energy or storage function that satisfies the dissipativity inequality and is then utilized as a Lyapunov function to ensure the internal stability requirements. Advanced H∞ Control is unique in the literature for its treatment of disturbance attenuation in nonsmooth systems. It synthesizes various tools, including Hamilton–Jacobi–Isaacs partial differential inequalities as well as Linear Matrix Inequalities. Along with the finite-dimensional treatment, the synthesis is extended to infinite-dimensional setting, involving time-delay and distributed parameter systems. To help illustrate this synthesis, the book focuses on electromechanical applications with nonsmooth phenomena caused by dry friction, backlash, and sampled-data measurements. Special attention is devoted to implementation issues. Requiring familiarity with nonlinear systems theory, this book will be accessible to graduate students interested in systems analysis and design, and is a welcome addition to the literature for researchers and practitioners in these areas.
Download or read book The Mathematics of Diffusion written by John Crank and published by Oxford University Press. This book was released on 1979 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.
Download or read book Finite Difference Computing with PDEs written by Hans Petter Langtangen and published by Springer. This book was released on 2017-06-21 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.
Download or read book The Classical Stefan Problem written by S.C. Gupta and published by Elsevier. This book was released on 2017-10-13 with total page 752 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Classical Stefan Problem: Basic Concepts, Modelling and Analysis with Quasi-Analytical Solutions and Methods, New Edition, provides fundamental theory, concepts, modelling and analysis of the physical, mathematical, thermodynamical and metallurgical properties of classical Stefan and Stefan-like problems as applied to heat transfer problems involving phase-changes, such as from liquid to solid. This self-contained work reports and derives the results from tensor analysis, differential geometry, non-equilibrium thermodynamics, physics and functional analysis, and is thoroughly enriched with many appropriate references for an in-depth background reading on theorems. This new edition includes more than 400 pages of new material on quasi-analytical solutions and methods of classical Stefan and Stefan-like problems. The book aims to bridge the gap between the theoretical and solution aspects of the afore-mentioned problems. - Provides both the phenomenology and mathematics of Stefan problems - Bridges physics and mathematics in a concrete and readable manner - Presents well-organized chapters that start with proper definitions followed by explanations and references for further reading - Includes both numerical and quasi-analytical solutions and methods of classical Stefan and Stefan-like problems
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Computational Fluid Dynamics and Heat Transfer written by Pradip Majumdar and published by CRC Press. This book was released on 2021-12-29 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough understanding of fluid dynamics and heat and mass transfer. The Second Edition contains new chapters on mesh generation and computational modeling of turbulent flow. Combining theory and practice in classic problems and computer code, the text includes numerous worked-out examples. Students will be able to develop computational analysis models for complex problems more efficiently using commercial codes such as ANSYS, STAR CCM+, and COMSOL. With detailed explanations on how to implement computational methodology into computer code, students will be able to solve complex problems on their own and develop their own customized simulation models, including problems in heat transfer, mass transfer, and fluid flows. These problems are solved and illustrated in step-by-step derivations and figures. FEATURES Provides unified coverage of computational heat transfer and fluid dynamics Covers basic concepts and then applies computational methods for problem analysis and solution Covers most common higher-order time-approximation schemes Covers most common and advanced linear solvers Contains new chapters on mesh generation and computer modeling of turbulent flow Computational Fluid Dynamics and Heat Transfer, Second Edition, is valuable to engineering instructors and students taking courses in computational heat transfer and computational fluid dynamics.
Download or read book Applications Of Fractional Calculus In Physics written by Rudolf Hilfer and published by World Scientific. This book was released on 2000-03-02 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and collects easily accessible review articles surveying those areas of physics in which applications of fractional calculus have recently become prominent.
Download or read book Adaptive Control of Parabolic PDEs written by Andrey Smyshlyaev and published by Princeton University Press. This book was released on 2010-07-01 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces a comprehensive methodology for adaptive control design of parabolic partial differential equations with unknown functional parameters, including reaction-convection-diffusion systems ubiquitous in chemical, thermal, biomedical, aerospace, and energy systems. Andrey Smyshlyaev and Miroslav Krstic develop explicit feedback laws that do not require real-time solution of Riccati or other algebraic operator-valued equations. The book emphasizes stabilization by boundary control and using boundary sensing for unstable PDE systems with an infinite relative degree. The book also presents a rich collection of methods for system identification of PDEs, methods that employ Lyapunov, passivity, observer-based, swapping-based, gradient, and least-squares tools and parameterizations, among others. Including a wealth of stimulating ideas and providing the mathematical and control-systems background needed to follow the designs and proofs, the book will be of great use to students and researchers in mathematics, engineering, and physics. It also makes a valuable supplemental text for graduate courses on distributed parameter systems and adaptive control.