EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Riemannian Geometry

    Book Details:
  • Author : Peter Petersen
  • Publisher : Springer Science & Business Media
  • Release : 2013-06-29
  • ISBN : 1475764340
  • Pages : 443 pages

Download or read book Riemannian Geometry written by Peter Petersen and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for a one year course, this volume serves as a single source, introducing students to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialise in Riemannian geometry. Instead of variational techniques, the author uses a unique approach, emphasising distance functions and special co-ordinate systems. He also uses standard calculus with some techniques from differential equations to provide a more elementary route. Many chapters contain material typically found in specialised texts, never before published in a single source. This is one of the few works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory, while also presenting the most up-to-date research - including sections on convergence and compactness of families of manifolds. Thus, this book will appeal to readers with a knowledge of standard manifold theory, including such topics as tensors and Stokes theorem. Various exercises are scattered throughout the text, helping motivate readers to deepen their understanding of the subject.

Book Differential Geometric Structures and Applications

Download or read book Differential Geometric Structures and Applications written by Vladimir Rovenski and published by Springer Nature. This book was released on with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Bochner Technique in Differential Geometry

Download or read book The Bochner Technique in Differential Geometry written by Hongxi Wu and published by . This book was released on 1988 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Vanishing and Finiteness Results in Geometric Analysis

Download or read book Vanishing and Finiteness Results in Geometric Analysis written by Stefano Pigola and published by Springer Science & Business Media. This book was released on 2008-05-28 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes very recent results involving an extensive use of analytical tools in the study of geometrical and topological properties of complete Riemannian manifolds. It analyzes in detail an extension of the Bochner technique to the non compact setting, yielding conditions which ensure that solutions of geometrically significant differential equations either are trivial (vanishing results) or give rise to finite dimensional vector spaces (finiteness results). The book develops a range of methods, from spectral theory and qualitative properties of solutions of PDEs, to comparison theorems in Riemannian geometry and potential theory.

Book Library of Congress Subject Headings

Download or read book Library of Congress Subject Headings written by Library of Congress. Cataloging Policy and Support Office and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Library of Congress Subject Headings

Download or read book Library of Congress Subject Headings written by Library of Congress and published by . This book was released on 2006 with total page 1960 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Century of Mathematics in America

Download or read book A Century of Mathematics in America written by Peter L. Duren and published by American Mathematical Soc.. This book was released on 1988 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first section of the book deals with some of the influential mathematics departments in the United States. Functioning as centers of research and training, these departments played a major role in shaping the mathematical life in this country. The second section deals with an extraordinary conference held at Princeton in 1946 to commemorate the university's bicentennial. The influence of women in American mathematics, the burgeoning of differential geometry in the last 50 years, and discussions of the work of von Karman and Weiner are among other topics covered.

Book Several Complex Variables

Download or read book Several Complex Variables written by KOHN and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years there has been increasing interaction among various branches of mathematics. This is especially evident in the theory of several complex variables where fruitful interplays of the methods of algebraic geometry, differential geometry, and partial differential equations have led to unexpected insights and new directions of research. In China there has been a long tradition of study in complex analysis, differential geometry and differential equations as interrelated subjects due to the influence of Professors S. S. Chern and L. K. Hua. After a long period of isolation, in recent years there is a resurgence of scientific activity and a resumption of scientific exchange with other countries. The Hangzhou conference is the first international conference in several complex variables held in China. It offered a good opportunity for mathematicians from China, U.S., Germany, Japan, Canada, and France to meet and to discuss their work. The papers presented in the conference encompass all major aspects of several complex variables, in particular, in such areas as complex differential geometry, integral representation, boundary behavior of holomorphic functions, invariant metrics, holomorphic vector bundles, and pseudoconvexity. Most of the participants wrote up their talks for these proceedings. Some of the papers are surveys and the others present original results. This volume constitutes an overview of the current trends of research in several complex variables.

Book Riemannian Geometry and Geometric Analysis

Download or read book Riemannian Geometry and Geometric Analysis written by Jürgen Jost and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present textbook is a somewhat expanded version of the material of a three-semester course I gave in Bochum. It attempts a synthesis of geometric and analytic methods in the study of Riemannian manifolds. In the first chapter, we introduce the basic geometric concepts, like dif ferentiable manifolds, tangent spaces, vector bundles, vector fields and one parameter groups of diffeomorphisms, Lie algebras and groups and in par ticular Riemannian metrics. We also derive some elementary results about geodesics. The second chapter introduces de Rham cohomology groups and the es sential tools from elliptic PDE for treating these groups. In later chapters, we shall encounter nonlinear versions of the methods presented here. The third chapter treats the general theory of connections and curvature. In the fourth chapter, we introduce Jacobi fields, prove the Rauch com parison theorems for Jacobi fields and apply these results to geodesics. These first four chapters treat the more elementary and basic aspects of the subject. Their results will be used in the remaining, more advanced chapters that are essentially independent of each other. In the fifth chapter, we develop Morse theory and apply it to the study of geodesics. The sixth chapter treats symmetric spaces as important examples of Rie mannian manifolds in detail.

Book Comparison Geometry

    Book Details:
  • Author : Karsten Grove
  • Publisher : Cambridge University Press
  • Release : 1997-05-13
  • ISBN : 9780521592222
  • Pages : 280 pages

Download or read book Comparison Geometry written by Karsten Grove and published by Cambridge University Press. This book was released on 1997-05-13 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an up to date work on a branch of Riemannian geometry called Comparison Geometry.

Book Differential Geometry and Lie Groups

Download or read book Differential Geometry and Lie Groups written by Jean Gallier and published by Springer Nature. This book was released on 2020-08-18 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook explores advanced topics in differential geometry, chosen for their particular relevance to modern geometry processing. Analytic and algebraic perspectives augment core topics, with the authors taking care to motivate each new concept. Whether working toward theoretical or applied questions, readers will appreciate this accessible exploration of the mathematical concepts behind many modern applications. Beginning with an in-depth study of tensors and differential forms, the authors go on to explore a selection of topics that showcase these tools. An analytic theme unites the early chapters, which cover distributions, integration on manifolds and Lie groups, spherical harmonics, and operators on Riemannian manifolds. An exploration of bundles follows, from definitions to connections and curvature in vector bundles, culminating in a glimpse of Pontrjagin and Chern classes. The final chapter on Clifford algebras and Clifford groups draws the book to an algebraic conclusion, which can be seen as a generalized viewpoint of the quaternions. Differential Geometry and Lie Groups: A Second Course captures the mathematical theory needed for advanced study in differential geometry with a view to furthering geometry processing capabilities. Suited to classroom use or independent study, the text will appeal to students and professionals alike. A first course in differential geometry is assumed; the authors’ companion volume Differential Geometry and Lie Groups: A Computational Perspective provides the ideal preparation.

Book Variational Methods

    Book Details:
  • Author : BERESTYCKI
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1475710801
  • Pages : 468 pages

Download or read book Variational Methods written by BERESTYCKI and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the framework of the "Annee non lineaire" (the special nonlinear year) sponsored by the C.N.R.S. (the French National Center for Scien tific Research), a meeting was held in Paris in June 1988. It took place in the Conference Hall of the Ministere de la Recherche and had as an organizing theme the topic of "Variational Problems." Nonlinear analysis has been one of the leading themes in mathemat ical research for the past decade. The use of direct variational methods has been particularly successful in understanding problems arising from physics and geometry. The growth of nonlinear analysis is largely due to the wealth of ap plications from various domains of sciences and industrial applica tions. Most of the papers gathered in this volume have their origin in applications: from mechanics, the study of Hamiltonian systems, from physics, from the recent mathematical theory of liquid crystals, from geometry, relativity, etc. Clearly, no single volume could pretend to cover the whole scope of nonlinear variational problems. We have chosen to concentrate on three main aspects of these problems, organizing them roughly around the following topics: 1. Variational methods in partial differential equations in mathemat ical physics 2. Variational problems in geometry 3. Hamiltonian systems and related topics.

Book Lectures on Differential Geometry

Download or read book Lectures on Differential Geometry written by Bennett Chow and published by American Mathematical Society. This book was released on 2024-09-23 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential geometry is a subject related to many fields in mathematics and the sciences. The authors of this book provide a vertically integrated introduction to differential geometry and geometric analysis. The material is presented in three distinct parts: an introduction to geometry via submanifolds of Euclidean space, a first course in Riemannian geometry, and a graduate special topics course in geometric analysis, and it contains more than enough content to serve as a good textbook for a course in any of these three topics. The reader will learn about the classical theory of submanifolds, smooth manifolds, Riemannian comparison geometry, bundles, connections, and curvature, the Chern?Gauss?Bonnet formula, harmonic functions, eigenfunctions, and eigenvalues on Riemannian manifolds, minimal surfaces, the curve shortening flow, and the Ricci flow on surfaces. This will provide a pathway to further topics in geometric analysis such as Ricci flow, used by Hamilton and Perelman to solve the Poincar‚ and Thurston geometrization conjectures, mean curvature flow, and minimal submanifolds. The book is primarily aimed at graduate students in geometric analysis, but it will also be of interest to postdoctoral researchers and established mathematicians looking for a refresher or deeper exploration of the topic.

Book Transcendental Methods in Algebraic Geometry

Download or read book Transcendental Methods in Algebraic Geometry written by Jean-Pierre Demailly and published by Springer. This book was released on 2006-11-14 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Geometry of Harmonic Maps

Download or read book Geometry of Harmonic Maps written by Yuanlong Xin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Harmonic maps are solutions to a natural geometrical variational prob lem. This notion grew out of essential notions in differential geometry, such as geodesics, minimal surfaces and harmonic functions. Harmonic maps are also closely related to holomorphic maps in several complex variables, to the theory of stochastic processes, to nonlinear field theory in theoretical physics, and to the theory of liquid crystals in materials science. During the past thirty years this subject has been developed extensively. The monograph is by no means intended to give a complete description of the theory of harmonic maps. For example, the book excludes a large part of the theory of harmonic maps from 2-dimensional domains, where the methods are quite different from those discussed here. The first chapter consists of introductory material. Several equivalent definitions of harmonic maps are described, and interesting examples are presented. Various important properties and formulas are derived. Among them are Bochner-type formula for the energy density and the second varia tional formula. This chapter serves not only as a basis for the later chapters, but also as a brief introduction to the theory. Chapter 2 is devoted to the conservation law of harmonic maps. Em phasis is placed on applications of conservation law to the mono tonicity formula and Liouville-type theorems.

Book A Panoramic View of Riemannian Geometry

Download or read book A Panoramic View of Riemannian Geometry written by Marcel Berger and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 835 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to the living topics of Riemannian Geometry and details the main results known to date. The results are stated without detailed proofs but the main ideas involved are described, affording the reader a sweeping panoramic view of almost the entirety of the field. From the reviews "The book has intrinsic value for a student as well as for an experienced geometer. Additionally, it is really a compendium in Riemannian Geometry." --MATHEMATICAL REVIEWS

Book Geometric Analysis

    Book Details:
  • Author : Peter Li
  • Publisher : Cambridge University Press
  • Release : 2012-05-03
  • ISBN : 1107020646
  • Pages : 417 pages

Download or read book Geometric Analysis written by Peter Li and published by Cambridge University Press. This book was released on 2012-05-03 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level text demonstrates the basic techniques for researchers interested in the field of geometric analysis.