EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Blast Performance of Reiforced Concrete Beams Constructed with High Strength Concrete and High Strength Reinforcement

Download or read book Blast Performance of Reiforced Concrete Beams Constructed with High Strength Concrete and High Strength Reinforcement written by Yang Li and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis focuses on the dynamic and static behaviour of reinforced concrete beams built using high-strength concrete and high-strength steel reinforcement. As part of this study, a total of 8 high-strength concrete beams, built with and without steel fibres, and reinforced with high strength ASTM A1035 bars are tested under simulated blast loading using the University of Ottawa shock-tube, with an additional 3 companion beams tested under quasi-static loading. The variables considered in this study include: concrete type, fibre content, steel reinforcement ratio and steel reinforcement type. The behaviour of the beams with high-strength steel bars is compared to a companion set of beams reinforced with conventional steel reinforcement. The criteria used to evaluate the blast performance of the beams includes: overall blast capacity, maximum and residual displacements, secondary fragmentation and crack control. The dynamic results show that high strength concrete beams reinforced with high-strength steel are able to resist higher blast loads and reduce displacements when compared to companion beams with conventional steel reinforcement. The results also demonstrate that the addition of steel fibres is effective in controlling crack formation, minimizing secondary blast fragments, reducing displacements and further increasing overall blast capacity. However, the use of high-strength steel and high-strength concrete also shows potential for brittle failures under extreme blast pressures. The static results show that specimens with high-strength steel bars do not increase beam stiffness, but significantly increase peak load carrying capacity when compared to beams with the same ratio of conventional steel reinforcement. The analytical research program aims at predicting the response of the test beams using dynamic inelastic single-degree-of-freedom (SDOF) analysis and includes a sensitivity analysis examining the effect of various modelling parameters on the response predictions. Overall the analytical results demonstrate that SDOF analysis can be used to predict the blast response of beams built with high-strength concrete and steel reinforcement with acceptable accuracy.

Book Effect of High Performance Concrete and Steel Materials on the Blast Performance of Reinforced Concrete One Way Slabs

Download or read book Effect of High Performance Concrete and Steel Materials on the Blast Performance of Reinforced Concrete One Way Slabs written by Christian Melançon and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Blast Performance of Ultra High Performance Concrete Beams Tested Under Shock Tube Induced Loads

Download or read book Blast Performance of Ultra High Performance Concrete Beams Tested Under Shock Tube Induced Loads written by Corey Guertin-Normoyle and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern day structures are reaching higher, spanning longer and undergoing new design methods. In addition to regular loads, it is becoming increasingly important to consider the potential risks of intentional and accidental explosions on structures. In the case of reinforced concrete buildings, critical elements such as beams and columns must de designed with sufficient strength and ductility to mitigate against the effects of blast loads to safekeep the public and prevent progressive structural collapse. Recent advancements in structural materials have led to the development of ultra-high-performance concrete (UHPC) with high compressive strength, tensile resistance, toughness and energy absorption capacity, properties which are ideal for blast protection of structures. Combining UHPC with high-performance steels, such as and high strength reinforcement is another potential solution to enhance the blast resilience of structures. This experimental and analytical research program investigates the advantages of combining high performance materials to increase the blast capacity of reinforced concrete beams. The experimental program includes tests on 21 beam specimens, fourteen of which are subjected to extreme blast loading using the University of Ottawa shock-tube, with seven companion specimens tested statically. Parameters investigated include: effect of concrete type (NSC vs. UHPC), effect of steel reinforcement type (NSR vs. HSR), effect of longitudinal reinforcement ratio, effect of fiber type/content and effect of transverse reinforcement on structural performance under static and dynamic loads. The experimental study includes three series having specified material combinations as follows: series 1 (NSC & NSR), series 2 (UHPC & NSR) and series 3 (UHPC & HSR). Each dynamically tested beam specimen is subjected to gradually increasing blast shockwaves until reaching failure. Performance assessment criteria included; maximum and residual displacements, overall blast resistance and resistance to secondary fragmentation. Results show that the specimens detailed with UHPC can resist greater blast loads with reduced mid-span displacement and debris generation when compared to beams built with conventional concrete. The combination of UHPC and high strength reinforcement further enhances blast performance and delays failure as both high strength materials balance themselves for optimum efficiency. Similarly, for specimens subjected to static loading, the use of UHPC increased the maximum load resisted by the beams, although failure mode alters from concrete crushing to rebar rupture. The combination of UHPC and high strength reinforcement further heightens beam resistance, at the expense of reduced specimen ductility. The analytical component of this thesis presents an analysis program called UO Resistance which is capable of predicting structural element resistance curves and conducting a dynamic inelastic single degree of freedom (SDOF) analysis of members subjected to blast loads. Resistance curves generated using UO Resistance were compared to data obtained through static testing and were found to effectively predict specimen response. Similarly, dynamic analysis methods implemented in UO Resistance prove to be effective at predicting specimen response under blast load. Additionally, a sensitivity analysis was performed to evaluate the effect of various modeling parameters on the static and SDOF dynamic predictions of specimen response.

Book Structural Performance of High Strength Reinforced Concrete Beams Built with Synthetic Fibers

Download or read book Structural Performance of High Strength Reinforced Concrete Beams Built with Synthetic Fibers written by Roukaya Bastami and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents the results of a research program examining the effects of macro-synthetic fibers on the shear and flexural behaviour of high-strength concrete (HSC) beams subjected to static and blast loads. As part of the study, a series of seventeen fiber-reinforced HSC beams are built and tested under either quasi-static four-point bending or simulated blast loads using a shock-tube. The investigated test parameters include the effects of: macro-synthetic fibers, fiber hybridization, combined use of fibers and stirrups and longitudinal steel ratio and type. The results show that under slowly applied loads, the provision of synthetic fibers improves the shear capacity of the beams by allowing for the development of yield stresses in the longitudinal reinforcement, while the combined use of synthetic fibers and stirrups is found to improve flexural ductility and cracking behaviour. The results also show that the provision of synthetic fibers delays shear failure in beams tested under blast pressures, with improved control of blast-induced displacements and increased damage tolerance in beams designed with combined fibers and stirrups. The study also shows that the use of hybrid fibers was capable of effectively replacing transverse reinforcement under both loading types, allowing for ductile flexural failure. Moreover, the use of synthetic fibers was effective in better controlling crushing and spalling in beams designed with Grade 690 MPa high-strength reinforcement. Furthermore, the results demonstrate that synthetic fibers can possibly be used to relax the stringent detailing required by modern blast codes by increasing the transverse reinforcement hoop spacing without compromising performance. As part of the analytical study, the load-deflection responses (resistance functions) of the beams are predicted using sectional (moment-curvature) analysis, as well as more advanced 2D finite element modelling. Dynamic resistance functions developed using both approaches, and incorporating material strain-rate effects, are then used to conduct non-linear single-degree-of-freedom (SDOF) analyses of the blast-tested beams. In general, the results show that both methods resulted in reasonably accurate predictions of the static and dynamic experimental results.

Book Effects of Detailing and Fibers on the Static and Blast Behaviour of High Strength Concrete Beams

Download or read book Effects of Detailing and Fibers on the Static and Blast Behaviour of High Strength Concrete Beams written by Charlemagne Junior Charles and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The CSA S850 Blast standard provides guidelines that can be used to enhance the blast performance of reinforced concrete structures. In the case of beams, the standard requires the use of top continuity (compression) bars and well-detailed transverse steel to ensure strength and ductility under blast loads. However, the requirements in the CSA S850 standard are intended for normal-strength concrete structures. Given the increased use of high-strength concrete (HSC) in practice, there is a need to explore the effects of modern blast designs on the behavior of HSC structures subjected to blast loads. Accordingly, this project examines the effect of modern reinforcement detailing on the static, dynamic and post-blast performance of high-strength concrete beams. The study further examines the ability to use fibers to relax such detailing and simplify construction. A total of seventeen beams are tested. Static testing is conducted under four-point bending, with blast testing conducted using the University of Ottawa shock-tube. The post-blast behavior of the beams is assessed by conducting residual static tests on the blast-damaged specimens. The parameters investigated include the effects of: blast detailing vs. nominal detailing, steel fibers, the effect of longitudinal steel ratio (in compression and tension) and tie spacing. The results show that under static loads, the use of blast detailing significantly improves the flexural behavior of the beams in terms of ductility. Likewise, the provision of continuity (compression) bars and closely spaced ties is found to improve blast performance by better controlling displacements, increasing blast resistance, limiting damages and allowing for important post-blast residual capacity. The use of steel fibers and relaxed detailing (increased tie spacing) is found to increase resistance and improve cracking behavior under static loads, with an ability to match the blast performance of more heavily-detailed HSC specimens. The use of fibers also allowed for substantial post-blast capacity. Finally, the steel ratio (in tension, in compression and in the transverse direction) was found to affect the blast behavior of the HSC beams. In addition to the experiments, the analytical study predicts the static and blast response of the tested beams using sectional analysis and non-linear SDOF modeling. Results show that the analysis methodology was able to predict the static and blast responses of the blast-detailed and fiber-reinforced HSC beams with reasonable accuracy.

Book Ultra High Performance Concrete and High Performance Building Materials for Sustainable Construction

Download or read book Ultra High Performance Concrete and High Performance Building Materials for Sustainable Construction written by Ekkehard Fehling and published by BoD – Books on Demand. This book was released on 2024-01-01 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sustainable construction, with the overarching goal of reducing the environmental footprint of everything we build is becoming increasingly important and urgent in the light of the climate change the world is facing. The use of innovative and sustainable building materials, especially concrete as the worldwide most commonly used building material, offers a great opportunity to significantly reduce climate-relevant emissions in the construction sector. Due to their performance and reliable durability, the use of innovative high-performance concretes will help to reduce the need for new constructions and to sustainably repair existing infrastructure. In new buildings in particular, the use of high-performance materials can help to save energy and natural resources, which reduces climate-relevant emissions and thus global warming. With the current HiPerMat 6, we are responding to the growing understanding of the impact of our construction activities on the environment by placing greater emphasis on sustainability issues.

Book Blast Loading of Concrete Beams Reinforced with High strength Deformed Bars

Download or read book Blast Loading of Concrete Beams Reinforced with High strength Deformed Bars written by William A. Keenan and published by . This book was released on 1963 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Equations for the static collapse deflection and the maximum dynamic deflection of a uniformly loaded concrete beam are presented.

Book High Performance High Strength Concrete

Download or read book High Performance High Strength Concrete written by Balamuthu Vijaya Rangan and published by . This book was released on 1998 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Civil Engineering and Building Materials

Download or read book Advances in Civil Engineering and Building Materials written by Shuenn-Yih Chang and published by CRC Press. This book was released on 2012-10-31 with total page 974 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Civil Engineering and Building Materials presents the state-of-the-art development in: - Structural Engineering - Road & Bridge Engineering- Geotechnical Engineering- Architecture & Urban Planning- Transportation Engineering- Hydraulic Engineering - Engineering Management- Computational Mechanics- Construction Technology- Buildi

Book Ultra High Performance Concrete UHPC

Download or read book Ultra High Performance Concrete UHPC written by Ekkehard Fehling and published by John Wiley & Sons. This book was released on 2015-04-20 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Selected chapters from the German concrete yearbook are now being published in the new English "Beton-Kalender Series" for the benefit of an international audience. Since it was founded in 1906, the Ernst & Sohn "Beton-Kalender" has been supporting developments in reinforced and prestressed concrete. The aim was to publish a yearbook to reflect progress in "ferro-concrete" structures until - as the book's first editor, Fritz von Emperger (1862-1942), expressed it - the "tempestuous development" in this form of construction came to an end. However, the "Beton-Kalender" quickly became the chosen work of reference for civil and structural engineers, and apart from the years 1945-1950 has been published annually ever since. Ultra high performance concrete (UHPC) is a milestone in concrete technology and application. It permits the construction of both more slender and more durable concrete structures with a prolonged service life and thus improved sustainability. This book is a comprehensive overview of UHPC - from the principles behind its production and its mechanical properties to design and detailing aspects. The focus is on the material behaviour of steel fibre-reinforced UHPC. Numerical modelling and detailing of the connections with reinforced concrete elements are featured as well. Numerous examples worldwide - bridges, columns, facades and roofs - are the basis for additional explanations about the benefits of UHPC and how it helps to realise several architectural requirements. The authors are extensively involved in the testing, design, construction and monitoring of UHPC structures. What they provide here is therefore a unique synopsis of the state of the art with a view to practical applications.

Book Performance of Steel Fiber Reinforced Concrete Beams Under Shock Tube Induced Blast Loading

Download or read book Performance of Steel Fiber Reinforced Concrete Beams Under Shock Tube Induced Blast Loading written by Steve Castonguay and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis focuses on the dynamic and static behavior of steel fiber-reinforced concrete (SRFC) beams. As part of this study a total of eighteen (18) beams are tested, including fourteen (14) SFRC beams, and a companion set of four (4) beams built without fibers. Seven (7) of the beams are tested under quasi-static (slowly applied) loading with the remaining eleven (11) beams tested under simulated blast loading using the University of Ottawa shock-tube. The variables considered in this study include: concrete type (SFRC vs. conventional concrete), fiber content, fiber type, as well as the effect of transverse reinforcement. The criteria used to evaluate the blast performance of the beams includes: overall blast capacity, maximum and residual mid-span displacement, secondary fragmentation and damage control. Static results confirm the beneficial effect of fibers on improving the shear and flexural capacity of beams. Dynamic results show that use of steel fibers at a sufficient content can increase shear capacity and effectively replace transverse reinforcement in beams tested under blast loads. The results also show that increasing fiber content can improve the blast response of the beams by reducing maximum and residual mid-span displacement, improving damage tolerance and minimizing secondary blast fragments. However, at high fiber contents, problems with workability of the concrete mix can occur, resulting in a reduction of improvements when compared to SFRC specimens with lower fiber content. The analytical research program aimed at predicting the response of the test beams using dynamic inelastic single-degree-of-freedom (SDOF) analysis. Overall the analytical results demonstrate that SDOF analysis can be used to predict the blast response of beams built with SFRC.

Book Studies on Shear Strength of High Performance Concrete Beams

Download or read book Studies on Shear Strength of High Performance Concrete Beams written by P. Y. L. Kong and published by . This book was released on 1997 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Performance Characterization of Beams with High Strength Reinforcement

Download or read book Performance Characterization of Beams with High Strength Reinforcement written by Duy Vu To and published by . This book was released on 2018 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: A laboratory test and analytical research program was undertaken to characterize the performance of reinforced concrete beams with high-strength reinforcement subjected to reversed cyclic lateral loading simulating earthquake effects. The beams are representative of beams used in special moment frames. Four beams were tested in the laboratory test investigation, one with A706 Grade 60 reinforcement, one with Grade 100 reinforcement having tensile-to-yield strength ratio (T/Y) of 1.17, one with Grade 100 reinforcement with T/Y = 1.26, and one with A1035 Grade 100 reinforcement. In each beam, the noted reinforcement grade was used for both longitudinal and transverse reinforcement, except for beam with Grade 100 T/Y = 1.17 that had transverse reinforcement of Grade 100 with T/Y = 1.26. Overall, all beams achieved rotation capacity of at least 0.045 radians. The beams with A706 Grade 60 and Grade 100 (T/Y = 1.26) reinforcement failed by buckling of longitudinal bars over several hoop spacings. The other two beams with Grade 100 reinforcement failed by fracture of longitudinal bars at the maximum moment section. Strain gauges installed on longitudinal bars indicated that beams with higher T/Y achieved greater spread of plasticity compared to beams with lower T/Y. In the analytical study, the seismic performance of tall reinforced concrete special moment resisting frames with high-strength reinforcement was investigated through nonlinear dynamic analyses. Four 20-story reinforced concrete moment frames, three reinforced with Grade 100 steel and one with Grade 60 steel were designed in accordance with ASCE 7-16 and ACI 318-14 at a hypothetical site in San Francisco, California. All four frames had the same dimensions and concrete properties, resulting in identical design drifts. Frames with Grade 100 reinforcement were designed to have reduced amount of longitudinal reinforcement to provide equivalent nominal strength as was provided in the Grade 60 reinforcement model. Tests had demonstrated that frames with higher-grade reinforcement had greater strain penetration into beam-column joints, resulting in greater slip of reinforcement from connections. This effect combined with reduced reinforcement ratios caused the frames with Grade 100 reinforcement to be more flexible than the frame with Grade 60 reinforcement. In addition, some currently available types of Grade 100 reinforcement have lower tensile-to-yield strength ratio and lower uniform elongation compared with Grade 60 reinforcement. The reduced T/Y results in reduced strain-hardening, increased strain localization, and increased P-Delta effects. The effects of these local behaviors on overall frame performance are studied through the nonlinear dynamic analyses. The various types of reinforcement were found to result in minor differences in overall frame seismic performance.

Book UHPCC Under Impact and Blast

Download or read book UHPCC Under Impact and Blast written by Qin Fang and published by Springer Nature. This book was released on 2021-02-22 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about the Ultra-high Performance Cementitious Composites (UHPCC), which is a relativity new type of cementitious materials. UHPCC has very low water-to-binder ratio, high amount of high-range water reducer, fine aggregates and high-strength steel or organic fibers. With the prominent mechanical properties, e.g., high compressive and tensile strength, high ductility, and high fracture energy, UHPCC has been becoming the most prospective construction cement-based material for both civil and military structures to resist high-speed projectile penetration, low-velocity impact and blast loadings. In this book, the related work conducted by authors on the static and dynamic mechanical properties, as well as the impact and blast resistance of UHPCC are presented. This book is written for the researchers, engineers and graduate students in the fields of protective structures and terminal ballistics.

Book Reinforced Concrete Deep Beams

Download or read book Reinforced Concrete Deep Beams written by F K Kong and published by CRC Press. This book was released on 1991-05-01 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contents of this book have been chosen with the following main aims: to review the present coverage of the major design codes and the CIRIA guide, and to explain the fundamental behaviour of deep beams; to provide information on design topics which are inadequately covered by the current codes and design manuals; and to give authoritative revie