EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Biomimetic Membranes as New Materials for Applications in Envrionmental Engineering and Biology

Download or read book Biomimetic Membranes as New Materials for Applications in Envrionmental Engineering and Biology written by Manish Kumar and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Biological water channel proteins, called aquaporins, provide selective and rapid transport of water across cell membranes. They utilize an elegant mechanism distinct from and more efficient than that used in commercial solute separation polymeric membranes such as Reverse Osmosis (RO) membranes. In this work, the bacterial Aquaporin (AqpZ) was functionally incorporated into synthetic biomimetic polymer vesicles. Using stopped flow light scattering, the permeability of such systems was determined to be up to two orders of magnitude higher than current RO membranes, revealing the potential of this approach. A templating procedure was then used to make flat membrane films with a high density of AqpZ. The sizes of these films are small (~500 nm) and more research needs to be performed to scale up this process. However, this method led to creation of flat 2D or thin 3D crystals of AqpZ in a polymer matrix as confirmed by electron diffraction. This indicates that the packing efficiency of these polymer-based systems is extremely high. Additionally, such crystals have the potential to allow for structural reconstruction of the incorporated aquaporins. This procedure can thus provide fundamental knowledge regarding the conformation of membrane proteins in block copolymers and help in design of functional protein-polymer hybrid materials. This work also led to the serendipitous discovery of AqpZ gating (reversible closure) at low pH values when incorporated into triblock copolymer vesicles. This gating is also present in bacteria and has relevance for bacterial survival under acid and osmotic shock. An overall scheme of osmoregulation and acidic shock survival utilizing coordinated activation and gating of membrane proteins is proposed. Several research ideas resulted from this work and are currently being pursued. This includes determination of insertion efficiency of membrane proteins in block copolymers, the use of block copolymer membranes for studying gas transport in membrane proteins, block copolymer vesicles with encapsulated perchlorate degrading enzymes for water treatment, and carbon capture using active CO2 transporters inserted into block copolymer membranes. Overall, this work has demonstrated the promise of using hybrid protein-polymer systems for environmental engineering applications. In particular its applicability to synthetic desalination membranes is most promising and relevant. The basic approach used here may be applied to any separation for which a specific transport protein is available or could be engineered. My work has also contributed to understanding the properties of aquaporins, in particular AqpZ and its possible role in microbial physiology. Finally, recent successes in immobilizing protein molecules and in synthesizing 2D crystals of membrane proteins may provide an excellent way to answer fundamental questions regarding the structure and function of these membrane proteins in block copolymers. In broad terms, this work has shown that biology provides excellent paradigms for engineering materials and processes that are efficient and sustainable and that this 0́−reverse engineering0́+ approach can enrich our understanding of underlying biological phenomena

Book Biomimetic Lipid Membranes  Fundamentals  Applications  and Commercialization

Download or read book Biomimetic Lipid Membranes Fundamentals Applications and Commercialization written by Fatma N. Kök and published by Springer. This book was released on 2019-04-16 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book compiles the fundamentals, applications and viable product strategies of biomimetic lipid membranes into a single, comprehensive source. It broadens its perspective to interdisciplinary realms incorporating medicine, biology, physics, chemistry, materials science, as well as engineering and pharmacy at large. The book guides readers from membrane structure and models to biophysical chemistry and functionalization of membrane surfaces. It then takes the reader through a myriad of surface-sensitive techniques before delving into cutting-edge applications that could help inspire new research directions. With more than half the world's drugs and various toxins targeting these crucial structures, the book addresses a topic of major importance in the field of medicine, particularly biosensor design, diagnostic tool development, vaccine formulation, micro/nano-array systems, and drug screening/development. Provides fundamental knowledge on biomimetic lipid membranes; Addresses some of biomimetic membrane types, preparation methods, properties and characterization techniques; Explains state-of-art technological developments that incorporate microfluidic systems, array technologies, lab-on-a-chip-tools, biosensing, and bioprinting techniques; Describes the integration of biomimetic membranes with current top-notch tools and platforms; Examines applications in medicine, pharmaceutical industry, and environmental monitoring.

Book Biomimetic and Bioinspired Membranes for New Frontiers in Sustainable Water Treatment Technology

Download or read book Biomimetic and Bioinspired Membranes for New Frontiers in Sustainable Water Treatment Technology written by Amira Abdelrasoul and published by BoD – Books on Demand. This book was released on 2017-12-06 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomimetic and bioinspired membranes are the most promising type of membrane for multiple usage scenarios, including commercial separation applications as well as water and wastewater treatment technologies. In recent years, aquaporin biomimetic membranes (ABMs) for water purification have raised considerable interest. These membranes display uniquely favorable properties and outstanding performances, such as diverse interactions, varied selective transport mechanisms, superior stability, high resistance to membrane fouling, and distinct adaptability. Biomimetic membranes would make a significant contribution to alleviate water stress, environmental threats, and energy consumption.

Book Biomimetic Membranes for Sensor and Separation Applications

Download or read book Biomimetic Membranes for Sensor and Separation Applications written by Claus Hélix-Nielsen and published by Springer Science & Business Media. This book was released on 2012-01-02 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. Recent advances in developing biomimetic membranes for technological applications will be presented with focus on the use of integral membrane protein mediated transport for sensing and separation. It describes the fundamentals of biosensing as well as separation and shows how the two processes are working in a cooperative manner in biological systems. Biomimetics is a truly cross-disciplinary approach and this is exemplified using the process of forward osmosis will be presented as an illustration of how advances in membrane technology may be directly stimulated by an increased understanding of biological membrane transport. In the development of a biomimetic sensor/separation technology, both channels (ion and water channels) and carriers (transporters) are important. An ideal sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to water, electrolytes, and non-electrolytes. These non-protein mediated membrane transport contributions will be presented and the implications for biomimetic device construction will be discussed. New developments in our understanding of the reciprocal coupling between the material properties of the biomimetic matrix and the embedded proteins will be presented and strategies for inducing biomimetic matrix stability will be discussed. Once reconstituted in its final host biomimetic matrix the protein stability also needs to be maintained and controlled. Beta-barrel proteins exemplified by the E. Coli outer membrane channels or small peptides are inherently more stable than alpha-helical bundle proteins which may require additional stabilizing modifications. The challenges associated with insertion and stabilization of alpha-helical bundle proteins including many carriers and ligand and voltage gated ion (and water) channels will be discussed and exemplified using the aquaporin protein. Many biomimetic membrane applications require that the final device can be used in the macroscopic realm. Thus a biomimetic separation device must have the ability to process hundred of liters of permeate in hours – effectively demanding square-meter size membranes. Scalability is a general issue for all nano-inspired technology developments and will be addressed here in the context biomimetic membrane array fabrication. Finally a robust working biomimetic device based on membrane transport must be encapsulated and protected yet allowing massive transport though the encapsulation material. This challenge will be discussed using microfluidic design strategies as examples of how to use microfluidic systems to create and encapsulate biomimetic membranes. The book provides an overview of what is known in the field, where additional research is needed, and where the field is heading.

Book Biomimetic Membranes for Sensor and Separation Applications

Download or read book Biomimetic Membranes for Sensor and Separation Applications written by Claus Hélix-Nielsen and published by Springer Science & Business Media. This book was released on 2012-01-02 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. Recent advances in developing biomimetic membranes for technological applications will be presented with focus on the use of integral membrane protein mediated transport for sensing and separation. It describes the fundamentals of biosensing as well as separation and shows how the two processes are working in a cooperative manner in biological systems. Biomimetics is a truly cross-disciplinary approach and this is exemplified using the process of forward osmosis will be presented as an illustration of how advances in membrane technology may be directly stimulated by an increased understanding of biological membrane transport. In the development of a biomimetic sensor/separation technology, both channels (ion and water channels) and carriers (transporters) are important. An ideal sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to water, electrolytes, and non-electrolytes. These non-protein mediated membrane transport contributions will be presented and the implications for biomimetic device construction will be discussed. New developments in our understanding of the reciprocal coupling between the material properties of the biomimetic matrix and the embedded proteins will be presented and strategies for inducing biomimetic matrix stability will be discussed. Once reconstituted in its final host biomimetic matrix the protein stability also needs to be maintained and controlled. Beta-barrel proteins exemplified by the E. Coli outer membrane channels or small peptides are inherently more stable than alpha-helical bundle proteins which may require additional stabilizing modifications. The challenges associated with insertion and stabilization of alpha-helical bundle proteins including many carriers and ligand and voltage gated ion (and water) channels will be discussed and exemplified using the aquaporin protein. Many biomimetic membrane applications require that the final device can be used in the macroscopic realm. Thus a biomimetic separation device must have the ability to process hundred of liters of permeate in hours – effectively demanding square-meter size membranes. Scalability is a general issue for all nano-inspired technology developments and will be addressed here in the context biomimetic membrane array fabrication. Finally a robust working biomimetic device based on membrane transport must be encapsulated and protected yet allowing massive transport though the encapsulation material. This challenge will be discussed using microfluidic design strategies as examples of how to use microfluidic systems to create and encapsulate biomimetic membranes. The book provides an overview of what is known in the field, where additional research is needed, and where the field is heading.

Book Antibiofouling Membranes for Water and Wastewater Treatment

Download or read book Antibiofouling Membranes for Water and Wastewater Treatment written by Zhiwei Wang and published by Elsevier. This book was released on 2024-10-01 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Antibiofouling Membranes for Water and Wastewater Treatment: Principles and Applications covers most recent advances, challenges, and industrial applications of antibiofouling membranes to help in reducing cost and increasing sustainability of long term-filtration performance of membranes in water and wastewater treatment. This book will provide a compact source of relevant and timely information on antibiofouling membranes and will be of great interest to scientists, engineers, industry R&D personnel, and graduate students engaged in the development, engineering scale-up, and applications of antibiofouling membranes, as well as other readers who are interested in microfiltration, membrane bioreactor, ultrafiltration, nanofiltration, reverse osmosis, and related topics. Covers scientific and engineering principles of antibiofouling membranes for water and wastewater treatment Unravels the structure-preparation-property-application relationship of antibiofouling membranes Provides advanced design strategies of antibiofouling membrane materials Summarizes and critically discusses antibiofouling membrane materials based on biocidal nanomaterials and quaternary ammonium compounds Focuses on the state-of-the-art applications of antibiofouling membranes for water and wastewater treatment

Book Biomimetic Membranes for Sensor and Separation Applications

Download or read book Biomimetic Membranes for Sensor and Separation Applications written by Claus Hélix-Nielsen and published by Springer. This book was released on 2013-01-02 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. Recent advances in developing biomimetic membranes for technological applications will be presented with focus on the use of integral membrane protein mediated transport for sensing and separation. It describes the fundamentals of biosensing as well as separation and shows how the two processes are working in a cooperative manner in biological systems. Biomimetics is a truly cross-disciplinary approach and this is exemplified using the process of forward osmosis will be presented as an illustration of how advances in membrane technology may be directly stimulated by an increased understanding of biological membrane transport. In the development of a biomimetic sensor/separation technology, both channels (ion and water channels) and carriers (transporters) are important. An ideal sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to water, electrolytes, and non-electrolytes. These non-protein mediated membrane transport contributions will be presented and the implications for biomimetic device construction will be discussed. New developments in our understanding of the reciprocal coupling between the material properties of the biomimetic matrix and the embedded proteins will be presented and strategies for inducing biomimetic matrix stability will be discussed. Once reconstituted in its final host biomimetic matrix the protein stability also needs to be maintained and controlled. Beta-barrel proteins exemplified by the E. Coli outer membrane channels or small peptides are inherently more stable than alpha-helical bundle proteins which may require additional stabilizing modifications. The challenges associated with insertion and stabilization of alpha-helical bundle proteins including many carriers and ligand and voltage gated ion (and water) channels will be discussed and exemplified using the aquaporin protein. Many biomimetic membrane applications require that the final device can be used in the macroscopic realm. Thus a biomimetic separation device must have the ability to process hundred of liters of permeate in hours – effectively demanding square-meter size membranes. Scalability is a general issue for all nano-inspired technology developments and will be addressed here in the context biomimetic membrane array fabrication. Finally a robust working biomimetic device based on membrane transport must be encapsulated and protected yet allowing massive transport though the encapsulation material. This challenge will be discussed using microfluidic design strategies as examples of how to use microfluidic systems to create and encapsulate biomimetic membranes. The book provides an overview of what is known in the field, where additional research is needed, and where the field is heading.

Book Novel Membrane Technologies for Traditional Industrial Processes

Download or read book Novel Membrane Technologies for Traditional Industrial Processes written by Pei Li and published by MDPI. This book was released on 2019-04-09 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through reading this book, you will obtain information on: (1) the main problems in air separation and natural gas treatment by membrane separation and how to solve them; (2) processes involving membranes and new membrane materials for the more economical utilization of bio-resources; (3) energy selection and membrane development for more expedient and stable harnessing of the natural osmosis phenomenon; (4) many excellent contributions about catalytic membrane bioreactors; (5) how to fine-tune the arrangement of aquaporins (i.e., proteins identified in biological cells) to achieve superior water treatment efficiency.

Book Green Membrane Technology Towards Environmental Sustainability

Download or read book Green Membrane Technology Towards Environmental Sustainability written by Ludovic Francis Dumee and published by Elsevier. This book was released on 2023-08-11 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: Green Membrane Technology Towards Environmental Sustainability covers experimental and theoretical aspects of greener membranes and processes. The book fills the gap in current literature and offers a platform that introduces and discusses new routes in fabricating green membranes and processes for developing green membranes. Although membranes and membrane processes have decades of history, rapid development in membranes manufacturing and emerging membrane driven markets is requiring new and more sustainable engagement of manufacturers, membrane operators and scientists. This book is written for chemical and polymer engineers, materials scientists, professors, graduate students, as well as general readers at universities, research institutions and R&D departments in industries who are engaged in sustainable engineering and practical strategies in circular economy. Provides a broad reference base on a wide range of information on greener technologies and new generation membranes Details experimental and theoretical aspects of the greener membranes and processes Dedicated exclusively to greener routes for fabricating sustainable membranes in separation and delivery applications

Book Membranes for Environmental Applications

Download or read book Membranes for Environmental Applications written by Zhien Zhang and published by Springer Nature. This book was released on 2020-02-29 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces recent developments of membrane technologies applied to gas and water treatments, energy processes and environmental issues. Novel knowledge and mechanisms on membrane fabrication and usage in energy, chemical, and environmental engineering are detailed in 12 book chapters from France, UK, Spain, China, Nigeria, Iran and Pakistan. The information in this book will be useful for engineers, students, and experts in these fields.

Book Membrane Technology Enhancement for Environmental Protection and Sustainable Industrial Growth

Download or read book Membrane Technology Enhancement for Environmental Protection and Sustainable Industrial Growth written by Zhien Zhang and published by Springer Nature. This book was released on 2020-12-14 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a detailed discussion of the fundamentals and practical applications of membrane technology enhancement in a range of industrial processes, energy recovery, and resource recycling. To date, most books on the applications of membrane technology have mainly focused on gas pollution removal or industrial wastewater treatment. In contrast, the enhancement of various membrane processes in the areas of energy and the environment has remained largely overlooked. This book highlights recent works and industrial products using membrane technology, while also discussing experiments and modeling studies on the membrane enhancement process.

Book Biomimetics    Materials  Structures and Processes

Download or read book Biomimetics Materials Structures and Processes written by Petra Gruber and published by Springer Science & Business Media. This book was released on 2011-07-06 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents an outline of current activities in the field of biomimetics and integrates a variety of applications comprising biophysics, surface sciences, architecture and medicine. Biomimetics as innovation method is characterised by interdisciplinary information transfer from the life sciences to technical application fields aiming at increased performance, functionality and energy efficiency. The contributions of the book relate to the research areas: - Materials and structures in nanotechnology and biomaterials - Biomimetic approaches to develop new forms, construction principles and design methods in architecture - Information and dynamics in automation, neuroinformatics and biomechanics Readers will be informed about the latest research approaches and results in biomimetics with examples ranging from bionic nano-membranes to function-targeted design of tribological surfaces and the translation of natural auditory coding strategies.

Book Biomedical Membranes and  bio  Artificial Organs

Download or read book Biomedical Membranes and bio Artificial Organs written by Dimitrios Stamatialis and published by . This book was released on 2017 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Controlled drug release systems : mechanisms and kinetics / M Sanopoulou and K G Papadokostaki -- Membranes for artificial kidney / J Vienken -- Advanced blood purification therapies / O de Beek, I Geremia, D Pavlenko and D Stamatialis -- Membranes for artificial lung and gas exchange applications / F Wiese -- Membranes for bioartificial kidney / N V Chevtchik, P Caetano-Pinto, R Masereeuw and D Stamatialis -- Membrane-based bioartificial liver devices / S Khakpour, H M M Ahmed and L De Bartolo -- Are co-culture approaches able to improve biological functions of membrane-based bioartificial livers? / V Pandolfi, U Pereira, M Dufresne and C Legallais -- Membranes for bioartificial pancreas / K Skryzpek, A van Apelddorn and D Stamatialis -- Health economic evaluation during the translation of medical technologies : involving users in the design of bio-artificial pancreas transplantation scenarios for type i diabetes / M IJzerman, T Wissing and E de Koning -- Membranes for regenerative medicine in clinical applications / G Falvo, D Labate and G Catapano -- Membranes for organs on chips / M P Tibbe, L I Segerink, A D van der Meer, D Stamatialis and A van den Berg

Book Membranes for Environmental Applications

Download or read book Membranes for Environmental Applications written by and published by . This book was released on 2020 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces recent developments of membrane technologies applied to gas and water treatments, energy processes and environmental issues. Novel knowledge and mechanisms on membrane fabrication and usage in energy, chemical, and environmental engineering are detailed in 12 book chapters from France, UK, Spain, China, Nigeria, Iran and Pakistan. The information in this book will be useful for engineers, students, and experts in these fields.

Book Biomimetic Materials Chemistry

Download or read book Biomimetic Materials Chemistry written by Stephen Mann and published by John Wiley & Sons. This book was released on 1996-01-18 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Provides new insights into materials science * Indicates the value of biology in materials science * Demonstrates how new interdisciplinary studies are influencing the fields of materials science and chemistry * Surveys this new field and shows what progress has been made as well as indicating the potential of these applications * Leading scientists review biomimetic approaches to the synthesis and processing of nanoparticles, thin patterned films, ceramics, and organic-inorganic composites * Focuses on molecule synthesis, templating, organized construction and microstructural processing of biomimetic materials related titles are: - Meyers: Molecular Biology and Biotechnology - Silver: Biocompatibility Vol.1: Polymers

Book Engineered Biomimicry

    Book Details:
  • Author : Akhlesh Lakhtakia
  • Publisher : Newnes
  • Release : 2013-05-24
  • ISBN : 0123914329
  • Pages : 493 pages

Download or read book Engineered Biomimicry written by Akhlesh Lakhtakia and published by Newnes. This book was released on 2013-05-24 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineered Biomimicry covers a broad range of research topics in the emerging discipline of biomimicry. Biologically inspired science and technology, using the principles of math and physics, has led to the development of products as ubiquitous as VelcroTM (modeled after the spiny hooks on plant seeds and fruits). Readers will learn to take ideas and concepts like this from nature, implement them in research, and understand and explain diverse phenomena and their related functions. From bioinspired computing and medical products to biomimetic applications like artificial muscles, MEMS, textiles and vision sensors, Engineered Biomimicry explores a wide range of technologies informed by living natural systems. Engineered Biomimicry helps physicists, engineers and material scientists seek solutions in nature to the most pressing technical problems of our times, while providing a solid understanding of the important role of biophysics. Some physical applications include adhesion superhydrophobicity and self-cleaning, structural coloration, photonic devices, biomaterials and composite materials, sensor systems, robotics and locomotion, and ultra-lightweight structures. Explores biomimicry, a fast-growing, cross-disciplinary field in which researchers study biological activities in nature to make critical advancements in science and engineering Introduces bioinspiration, biomimetics, and bioreplication, and provides biological background and practical applications for each Cutting-edge topics include bio-inspired robotics, microflyers, surface modification and more