EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Biomechanical Aspects of Manual Wheelchair Propulsion

Download or read book Biomechanical Aspects of Manual Wheelchair Propulsion written by Hendricus Elias Johannes Veeger and published by . This book was released on 1992 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Biomedical Aspects of Manual Wheelchair Propulsion

Download or read book Biomedical Aspects of Manual Wheelchair Propulsion written by L. H. V. van der Woude and published by IOS Press. This book was released on 1999 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mobility is fundamental to health, social integration and individual well-being of the human being. Henceforth, mobility must be viewed as being essential to the outcome of the rehabilitation process of wheelchair dependent persons and to the successful (re-)integration into society and to a productive and active life. Many lower limb disabled subjects depend upon a wheelchair for their mobility. Estimated numbers for the Netherlands, Europe and USA are respectively 80.000, 2,5 million and 1,25 million wheelchair dependent individuals. Groups large enough to allow a special research focus and conference activity. Both the quality of the wheelchair, the individual work capacity, the functionality of the wheelchair/user combination, and the effectiveness of the rehabilitation programme do indeed determine the freedom of mobility. Their optimization is highly dependent upon a continuous and high quality research effort, in combination with regular discussion and dissemination with practitioners. The book intends to give a state of the art view on the current fundamental, clinical and applied research findings and their consequences upon wheelchair propulsion, arm work, wheelchair training and possible consequences of a wheelchair confined life style. Also its implications for rehabilitation, as well as alternative modes of ambulation and activity in the wheelchair confined population, such as functional electrical stimulation and its possible future developments, are dealt with.

Book Wheeled Mobility Biomechanics

Download or read book Wheeled Mobility Biomechanics written by Philip Santos Requejo and published by Frontiers Media SA. This book was released on 2016-11-10 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the manual wheelchair (MWC) user, loss of lower extremity function often places the burden for mobility and activities of daily living on the upper extremities. This e-book on Wheeled Mobility Biomechanics contains current research that provides insights into the mechanical demands and performance techniques during tasks associated with MWC. Our intent was to contribute to advancing the knowledge regarding the variables that promote or hinder an individual’s capacity to handle the daily manual wheeled mobility demands and gain greater insights into upper extremity loading consequences, predictors of pain onset and injury, and ultimately identify strategies for preserving health and functional mobility for the MWC user.

Book Biomechanical Modeling of Manual Wheelchair Propulsion

Download or read book Biomechanical Modeling of Manual Wheelchair Propulsion written by Amy N. Koehler and published by . This book was released on 2017 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of a manual wheelchair (MWC) for everyday mobility is associated with some degree of biomechanical risk, particularly to the user’s trunk and upper extremities (UE), due to the loads placed on the body during propulsion and transfers. An improperly fitting wheelchair can require users to exert higher force or result in awkward positions that can place unnecessary strain on the UE. The combination of repetitive motion, higher peak forces and large joint deflections may result in musculoskeletal problems or injuries. Clinical fitting methodologies are primarily categorical and qualitative and as such are based on the clinician’s perception and previous experience. Therefore, they do not provide a good basis for quantitative prediction of the impact of the wheelchair system on the user’s biomechanics and the associated risk for developing additional musculoskeletal problems. Recent studies have focused on the identification of MWC user UE injuries and clinical prescription adjustments to prevent those injuries. While many adjustments have been supported using experimental data, computational modeling allows for a wider range of test case scenarios and the inclusion of additional factors that cannot be easily estimated in vivo, including the impact of deviations and changes to a wheelchair prescription on the user’s force generation capabilities and more accurate risk identification. A few biomechanical models exist in current literature, but they are not adaptable for widespread use, utilize private software, are subject-specific or are insufficient in analyzing the user and wheelchair system.

Book A Low cost Approach to Estimate Crucial Biomechanical Parameters of Manual Wheelchair Propulsion Technique

Download or read book A Low cost Approach to Estimate Crucial Biomechanical Parameters of Manual Wheelchair Propulsion Technique written by Rabail Khowaja and published by . This book was released on 2022 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "Introduction: A manual wheelchair (MWC) is an essential assistive device that enhances locomotion for individuals with restricted mobility. Unfortunately, 30% to 70% of total MWC users experience upper extremity pain due to repetitive propulsion. One fundamental aspect of MWC propulsion is a stroke pattern, of which one pattern is the semicircular (SC) pattern in which the hands return below the pushrim after a stroke. This pattern is favoured by MWC users, since it may help to decrease the prevalence of shoulder pain. To reduce the prevalence of upper extremity pain and injury for MWC users, research has identified critical changes in some of the specific parameters of MWC propulsion. In our lab, we have developed a low-cost virtual reality simulator that consists of a hardware interface that enables users to control a virtual MWC displayed on a screen, and which also provides force feedback. The present study measures push time, cycle time, velocity, and the contact angle of MWC propulsion, so users also can improve their stroke pattern. Objective: To determine the accuracy and precision of the MWC simulator for measuring the crucial biomechanical parameters of the MWC propulsion technique of young-health individuals when compared to a gold standard system. Methods: We recruited 12 healthy individuals through personal contacts. Participants propelled the MWC in a straight-line and an ecological scenario in the VR simulator. During the straightline scenario, participants propelled MWC at each of eight increasing stroke cadences--in synchronization with metronome beats--using two different propulsion patterns (SC and arcing (ARC)). Then, the participants propelled the MWC in an ecological scenario: an outdoor sidewalk scene that included side slopes, straight slopes, static obstacles, and a street crossing. Push time, vi cycle time, contact angle, and velocity were recorded simultaneously by the MWC simulator and the instrumented wheels (the SMARTWheel system) installed on the MWC. To analyze the collected data, we first calibrated the contact angle and velocity measured by the simulator by performing a regression analysis using the same variables measured by the SMARTWheel system. In the straight-line scenario, we compared the measurements of push time, cycle time, contact angle, and velocity by the simulator and the SMARTWheel by using a Bland-Altman analysis, which was done separately for each propulsion pattern (ARC and SC). Furthermore, we compared the effects of target cadence, propulsion pattern, and instrument measurements by using a mixedmodel analysis. For the ecological scenario, in which propulsion pattern and cadence were unconstrained, we compared the measurements of cycle time, push time, contact angle, and velocity by the simulator and SMARTWheel by using Bland-Altman and mixed-model analyses. Results: The measurements of the simulator and SMARTWheel were not influenced by the propulsion pattern (ARC and SC) or targeted cadence. All the measured variables in the straight-line scenario and ecological scenario were accurate but not precise. Among all the variables of interest, a good precision was achieved only for the measurement of cycle time during the straight-line scenario. For that measurement, the precision corresponded to 10% and 14% of the change due to training for propulsion with the ARC and SC patterns, respectively, with a 95% certainty. Discussion: The wheelchair propulsion variables measured during the straight-line and ecological scenarios were accurate, but, unfortunately, a targeted precision was not attained. However, the precision of the simulator measurements could be enhanced potentially by taking repeated measurements of the same condition. This study demonstrates that important MWC propulsion parameters can be measured accurately by a simulator during straight-line movements"--

Book Shoulder Pain and Wheelchair Propulsion Biomechanics in Manual Wheelchair Users

Download or read book Shoulder Pain and Wheelchair Propulsion Biomechanics in Manual Wheelchair Users written by Simon Briley and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dynamic Analysis and Biomechanical Modeling of Wheelchair Propulsion

Download or read book Dynamic Analysis and Biomechanical Modeling of Wheelchair Propulsion written by Konstantinos Vrongistinos and published by . This book was released on 2001 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Biomechanical Analysis of Wheelchair Propulsion

Download or read book Biomechanical Analysis of Wheelchair Propulsion written by Michael D. McDonald and published by . This book was released on 198? with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ergonomics of Manual Wheelchair Propulsion

Download or read book Ergonomics of Manual Wheelchair Propulsion written by L. H. V. van der Woude and published by Pro Juventute. This book was released on 1993 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Biomechanical Model of Pediatric Upper Extremity Dynamics During Wheelchair Mobility

Download or read book Biomechanical Model of Pediatric Upper Extremity Dynamics During Wheelchair Mobility written by Alyssa J. Paul and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomechanical analysis has been used by many to evaluate upper extremity (UE) motion during human movement, including during the use of assistive devices such as crutches and walkers. However, few studies have been conducted to examine the upper extremity kinetics during wheelchair mobility, specifically within the pediatric population. In 2000, 90% of wheelchair users (1.5 million people) in the United States were manual wheelchair users, requiring the use of their upper body to maneuver the wheelchair as well as perform other activities of daily living. Among children under the age of 18, the wheelchair was the most used assistive mobility device at 0.12% of the USA population (about 88,000 children). Of these children, 89.9% (79,000) use manual wheelchairs. Associated with the leading causes of assistive mobility device usage in children and adolescents, are severe cases of osteogenesis imperfecta (OI), cerebral palsy (CP), myelomeningocele (MM) and spinal cord injury (SCI). Once confined to a wheelchair, the upper extremities must take over the responsibilities of the lower extremities, including mobility and other activities of daily living. For many individuals who are wheelchair-bound since childhood, pain and other pathological symptoms present by their mid to late 20{u2019}s. Due to increased life expectancy and continual wheelchair use, these injuries may cause the user to have reduced, or loss of, independent function as they age, further decreasing quality-of-life. Better knowledge of upper extremity dynamics during wheelchair propulsion can improve understanding of the onset and propagation of UE pathologies. This may lead to improvements in wheelchair prescription, design, training, and long-term/transitional care. Thereby, pathology onset may be slowed or prevented, and quality of life restored. In order to better understand and model the UE joints during wheelchair mobility three main goals must be accomplished: 1. Create an upper extremity kinematic model including: additional segments, more accurate representations of segments and joint locations, consideration of ease of use in the clinical setting with children. 2. Create the corresponding kinetic model to determine the forces and moments occurring at each joint. 3. Implement the model and collect preliminary data from children with UE pathology.

Book Wheeled Mobility Biomechanics

Download or read book Wheeled Mobility Biomechanics written by and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the manual wheelchair (MWC) user, loss of lower extremity function often places the burden for mobility and activities of daily living on the upper extremities. This e-book on Wheeled Mobility Biomechanics contains current research that provides insights into the mechanical demands and performance techniques during tasks associated with MWC. Our intent was to contribute to advancing the knowledge regarding the variables that promote or hinder an individual's capacity to handle the daily manual wheeled mobility demands and gain greater insights into upper extremity loading consequences, predictors of pain onset and injury, and ultimately identify strategies for preserving health and functional mobility for the MWC user.

Book A Biomechanical Analysis of Seating Stresses Based Upon Wheelchair Propulsion

Download or read book A Biomechanical Analysis of Seating Stresses Based Upon Wheelchair Propulsion written by Justin Michael Pedersen and published by . This book was released on 2013 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Validation and Extension of a Biomechanical Model of Wheelchair Propulsion

Download or read book Validation and Extension of a Biomechanical Model of Wheelchair Propulsion written by Michael Lee Hofstad and published by . This book was released on 1992 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Three dimensional Biomechanical Analysis of the Upper Extremity During Wheelchair Propulsion

Download or read book Three dimensional Biomechanical Analysis of the Upper Extremity During Wheelchair Propulsion written by Margaret Ann Schneller and published by . This book was released on 1990 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Wheelchair Training Program for New Manual Wheelchair Users

Download or read book Wheelchair Training Program for New Manual Wheelchair Users written by Kerri Ann Morgan and published by . This book was released on 2015 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Manual wheelchairs are commonly used for everyday mobility among people with lower limb impairments, including persons with spinal cord injury (SCI). Manual wheelchair users often experience pain and chronic overuse injuries in their upper extremities, limiting their mobility and their ability to complete daily activities. The repetitive trauma of propelling a wheelchair may be a contributing factor to upper extremity pain and injury. The anatomy of the upper extremities is not designed for the number of repetitions and the amount of force involved in everyday wheelchair propulsion. Research has been conducted to identify recommendations for decreasing the number of repetitions and the amount of force involved with manual wheelchair propulsion; however, training on how to use a wheelchair, specifically propulsion training, is often not implemented during rehabilitation. Important steps in identifying strategies for teaching wheelchair propulsion and skills include exploring devices for training, understanding health care professional and wheelchair user perspectives of wheelchair training, and training based on motor learning approaches. Therefore, the overall goal of this project was to further explore methodology for training of new manual wheelchair users. To this end, we conducted three studies (Chapters 2-4). In study 1 (Chapter 2), we tested a wheelchair dynamometer roller system, the WheelMill System (WMS), on its use in simulating different surfaces (i.e., overground and ramps) and assessing propulsion variables that can be used for training new wheelchair users. We identified that the WMS has the ability to accurately simulate flat overground movement; however, the accuracy of the WMS was poor in simulation of ramps. Modifications to the software model and the addition of visual feedback may improve the accuracy of the simulation of ramps. The WMS was accurate in the quantification of biomechanical propulsion variables. In study 2 (Chapter 3), we identified perspectives of health care professionals and manual wheelchair users to assist in prioritizing the focus of wheelchair skills training of new manual wheelchair users. During focus groups, health care professionals and manual wheelchair users discussed if and how wheelchair propulsion biomechanics were taught and important skills that should be included in training. Results indicate that propulsion biomechanics were introduced but not addressed in detail. Important training components discussed include propulsion techniques, transfers in an out of the wheelchair, providing maintenance to the wheelchair, and navigating barriers such as curbs, ramps, and rough terrain. Health care professionals and manual wheelchair users identified many of the same skills as important but ranked them in a different order. In study 3 (Chapter 4), we piloted a wheelchair training program implementing aspects of motor learning for new manual wheelchair users and measured the impact of this program on wheelchair propulsion biomechanics and overall wheelchair skills. Post-training wheelchair biomechanics changed, as well as propulsion performance overground. Wheelchair skills did not change significantly post-training. Wheelchair training has the potential for change; however, there are many challenges associated with implementing training programs for new manual wheelchair users. Together, these results contribute knowledge to evidence-based approaches to teaching new manual wheelchair users with SCI how to efficiently and effectively use their wheelchairs. Specifically, we obtained information about technology for simulating and assessing manual wheelchair propulsion, perspectives of stakeholders with regard to the manual wheelchair training process, and methodology for training new manual wheelchair users.