EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Biomass Modification  Characterization and Process Monitoring Analytics to Support Biofuel and Biomaterial Production

Download or read book Biomass Modification Characterization and Process Monitoring Analytics to Support Biofuel and Biomaterial Production written by Robert Henry and published by Frontiers Media SA. This book was released on 2016-06-09 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: The conversion of lignocellulosic biomass into renewable fuels and other commodities has provided an appealing alternative towards supplanting global dependence on fossil fuels. The suitability of multitudes of plants for deconstruction to useful precursor molecules and products is currently being evaluated. These studies have probed a variety of phenotypic traits, including cellulose, non-cellulosic polysaccharide, lignin, and lignin monomer composition, glucose and xylose production following enzymatic hydrolysis, and an assessment of lignin-carbohydrate and lignin-lignin linkages, to name a few. These quintessential traits can provide an assessment of biomass recalcitrance, enabling researchers to devise appropriate deconstruction strategies. Plants with high polysaccharide and lower lignin contents have been shown to breakdown to monomeric sugars more readily. Not all plants contain ideal proportions of the various cell wall constituents, however. The capabilities of biotechnology can alleviate this conundrum by tailoring the chemical composition of plants to be more favorable for conversion to sugars, fuels, etc. Increases in the total biomass yield, cellulose content, or conversion efficiency through, for example, a reduction in lignin content, are pathways being evaluated to genetically improve plants for use in manufacturing biofuels and bio-based chemicals. Although plants have been previously domesticated for food and fiber production, the collection of phenotypic traits prerequisite for biofuel production may necessitate new genetic breeding schemes. Given the plethora of potential plants available for exploration, rapid analytical methods are needed to more efficiently screen through the bulk of samples to hone in on which feedstocks contain the desired chemistry for subsequent conversion to valuable, renewable commodities. The standard methods for analyzing biomass and related intermediates and finished products are laborious, potentially toxic, and/or destructive. They may also necessitate a complex data analysis, significantly increasing the experimental time and add unwanted delays in process monitoring, where delays can incur in significant costs. Advances in thermochemical and spectroscopic techniques have enabled the screening of thousands of plants for different phenotypes, such as cell-wall cellulose, non-cellulosic polysaccharide, and lignin composition, lignin monomer composition, or monomeric sugar release. Some instrumental methods have been coupled with multivariate analysis, providing elegant chemometric predictive models enabling the accelerated identification of potential feedstocks. In addition to the use of high-throughput analytical methods for the characterization of feedstocks based on phenotypic metrics, rapid instrumental techniques have been developed for the real-time monitoring of diverse processes, such as the efficacy of a specific pretreatment strategy, or the formation of end products, such as biofuels and biomaterials. Real-time process monitoring techniques are needed for all stages of the feedstocks-to-biofuels conversion process in order to maximize efficiency and lower costs by monitoring and optimizing performance. These approaches allow researchers to adjust experimental conditions during, rather than at the conclusion, of a process, thereby decreasing overhead expenses. This Frontiers Research Topic explores options for the modification of biomass composition and the conversion of these feedstocks into to biofuels or biomaterials and the related innovations in methods for the analysis of the composition of plant biomass, and advances in assessing up- and downstream processes in real-time. Finally, a review of the computational models available for techno-economic modeling and lifecycle analysis will be presented.

Book Biomass Modification  Characterization and Process Monitoring Analytics to Support Biofuel and Biomaterial Production

Download or read book Biomass Modification Characterization and Process Monitoring Analytics to Support Biofuel and Biomaterial Production written by and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The conversion of lignocellulosic biomass into renewable fuels and other commodities has provided an appealing alternative towards supplanting global dependence on fossil fuels. The suitability of multitudes of plants for deconstruction to useful precursor molecules and products is currently being evaluated. These studies have probed a variety of phenotypic traits, including cellulose, non-cellulosic polysaccharide, lignin, and lignin monomer composition, glucose and xylose production following enzymatic hydrolysis, and an assessment of lignin-carbohydrate and lignin-lignin linkages, to name a few. These quintessential traits can provide an assessment of biomass recalcitrance, enabling researchers to devise appropriate deconstruction strategies. Plants with high polysaccharide and lower lignin contents have been shown to breakdown to monomeric sugars more readily. Not all plants contain ideal proportions of the various cell wall constituents, however. The capabilities of biotechnology can alleviate this conundrum by tailoring the chemical composition of plants to be more favorable for conversion to sugars, fuels, etc. Increases in the total biomass yield, cellulose content, or conversion efficiency through, for example, a reduction in lignin content, are pathways being evaluated to genetically improve plants for use in manufacturing biofuels and bio-based chemicals. Although plants have been previously domesticated for food and fiber production, the collection of phenotypic traits prerequisite for biofuel production may necessitate new genetic breeding schemes. Given the plethora of potential plants available for exploration, rapid analytical methods are needed to more efficiently screen through the bulk of samples to hone in on which feedstocks contain the desired chemistry for subsequent conversion to valuable, renewable commodities. The standard methods for analyzing biomass and related intermediates and finished products are laborious, potentially toxic, and/or destructive. They may also necessitate a complex data analysis, significantly increasing the experimental time and add unwanted delays in process monitoring, where delays can incur in significant costs. Advances in thermochemical and spectroscopic techniques have enabled the screening of thousands of plants for different phenotypes, such as cell-wall cellulose, non-cellulosic polysaccharide, and lignin composition, lignin monomer composition, or monomeric sugar release. Some instrumental methods have been coupled with multivariate analysis, providing elegant chemometric predictive models enabling the accelerated identification of potential feedstocks. In addition to the use of high-throughput analytical methods for the characterization of feedstocks based on phenotypic metrics, rapid instrumental techniques have been developed for the real-time monitoring of diverse processes, such as the efficacy of a specific pretreatment strategy, or the formation of end products, such as biofuels and biomaterials. Real-time process monitoring techniques are needed for all stages of the feedstocks-to-biofuels conversion process in order to maximize efficiency and lower costs by monitoring and optimizing performance. These approaches allow researchers to adjust experimental conditions during, rather than at the conclusion, of a process, thereby decreasing overhead expenses. This Frontiers Research Topic explores options for the modification of biomass composition and the conversion of these feedstocks into to biofuels or biomaterials and the related innovations in methods for the analysis of the composition of plant biomass, and advances in assessing up- and downstream processes in real-time. Finally, a review of the computational models available for techno-economic modeling and lifecycle analysis will be presented.

Book Valorization of Biomass to Value Added Commodities

Download or read book Valorization of Biomass to Value Added Commodities written by Michael O. Daramola and published by Springer Nature. This book was released on 2020-04-21 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the most up-to-date technologies for the transformation of biomass into valuable fuels, chemicals, materials, and products. It provides comprehensive coverage of the characterization and fractionation of various types of biomass and details the many challenges that are currently encountered during this process. Divided into two sections, this book discusses timely topics such as the characterization of biomass feedstock, pretreatment and fractionation of biomass, and describes the process for conversion of biomass to value-added commodities. The authors bring biomass transformational strategies that are yet to be explored to the forefront, making this innovative book useful for graduate students and researchers in academia, government, and industry.

Book Socio Economic Impacts of Bioenergy Production

Download or read book Socio Economic Impacts of Bioenergy Production written by Dominik Rutz and published by Springer Science & Business Media. This book was released on 2014-02-23 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Around the world, many countries are increasing efforts to promote biomass production for industrial uses including biofuels and bio-products such as chemicals and bio-plastic. Against a backdrop of lively public debate on sustainability, bioenergy wields both positive and negative impacts upon a variety of environmental and socio-economic issues. These include property rights, labor conditions, social welfare, economic wealth, poverty reduction and more. This book discusses the issues and impacts of bioenergy, taking into account the local and regional framework under which bioenergy is produced, touching upon educational level, cultural aspects, the history and economies of the producing countries and an array of policies including environmental and social targets. The book surveys and analyzes global bioenergy production from a number of perspectives. The authors illustrate the complexity of interrelated topics in the bioenergy value chain, ranging from agriculture to conversion processes, as well as from social implications to environmental effects. It goes on to offer insight on future challenges associated with the expected boom of a global bio-based economy, which contributes to the paradigm shift from a fossil-based to a biomass and renewable energy-based economy. The expert contributors include researchers, investors, policy makers, representatives from NGOs and other stakeholders, from Europe, Africa, Asia and Latin America. Their contributions build upon the results of the Global-Bio-Pact project on “Global Assessment of Biomass and Bio-product Impacts on Socio-economics and Sustainability,” which was supported by the European Commission in its 7th Framework Program for Research and Technological Development, conducted from February 2010 to January 2013. The book benefits policy makers, scientists and NGO staffers working in the fields of agriculture, forestry, biotechnology and energy.

Book Biorefineries and Chemical Processes

Download or read book Biorefineries and Chemical Processes written by Jhuma Sadhukhan and published by John Wiley & Sons. This book was released on 2014-11-03 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the range of feedstocks, process technologies and products expand, biorefineries will become increasingly complex manufacturing systems. Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis presents process modelling and integration, and whole system life cycle analysis tools for the synthesis, design, operation and sustainable development of biorefinery and chemical processes. Topics covered include: Introduction: An introduction to the concept and development of biorefineries. Tools: Included here are the methods for detailed economic and environmental impact analyses; combined economic value and environmental impact analysis; life cycle assessment (LCA); multi-criteria analysis; heat integration and utility system design; mathematical programming based optimization and genetic algorithms. Process synthesis and design: Focuses on modern unit operations and innovative process flowsheets. Discusses thermochemical and biochemical processing of biomass, production of chemicals and polymers from biomass, and processes for carbon dioxide capture. Biorefinery systems: Presents biorefinery process synthesis using whole system analysis. Discusses bio-oil and algae biorefineries, integrated fuel cells and renewables, and heterogeneous catalytic reactors. Companion website: Four case studies, additional exercises and examples are available online, together with three supplementary chapters which address waste and emission minimization, energy storage and control systems, and the optimization and reuse of water. This textbook is designed to bridge a gap between engineering design and sustainability assessment, for advanced students and practicing process designers and engineers.

Book Biorefinery

    Book Details:
  • Author : Juan-Rodrigo Bastidas-Oyanedel
  • Publisher :
  • Release : 2019
  • ISBN : 9783030109622
  • Pages : pages

Download or read book Biorefinery written by Juan-Rodrigo Bastidas-Oyanedel and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the biorefinery of biomass feedstocks. In-depth chapters highlight the scientific and technical aspects and present a techno-economic analysis of such systems. By using a TEA approach, the authors present feasible pathways for conversion of biomass (both residual biomass, energy crops and algae biomass), showing the different possibilities for the production of biochemical materials, biofuels, and fertilizers. The concepts presented in this book will link companies, investors, and governments by providing a framework that will help reduce pollutants and create a biomass related economy that incorporates the newest developments and technologies in the area.

Book Biomass Recalcitrance

    Book Details:
  • Author : Michael Himmel
  • Publisher : Wiley-Blackwell
  • Release : 2008-06-23
  • ISBN :
  • Pages : 552 pages

Download or read book Biomass Recalcitrance written by Michael Himmel and published by Wiley-Blackwell. This book was released on 2008-06-23 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the connection between biomass structure, ultrastructure, and composition, to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments, enzymatic hydrolysis, and product fermentation options."--Pub. desc.

Book Biofuels Production

Download or read book Biofuels Production written by Vikash Babu and published by John Wiley & Sons. This book was released on 2013-09-09 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: The search for alternative sources of energy to offset diminishing resources of easy and cost-effective fossil fuels has become a global initiative, and fuel generated from biomass is a leading competitor in this arena. Large-scale introduction of biofuels into the energy mix could contribute to environmentally and economicaly sustainable development on a global scale. The processes and methodologies presented in this volume will offer a cutting-edge and comprehensive approach to the production of biofuels, for engineers, researchers, and students.

Book Biomass Volume Estimation and Valorization for Energy

Download or read book Biomass Volume Estimation and Valorization for Energy written by Jaya Shankar Tumuluru and published by BoD – Books on Demand. This book was released on 2017-02-22 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the outcome of contributions by many experts in the field from different disciplines, various backgrounds, and diverse expertise. This book provides information on biomass volume calculation methods and biomass valorization for energy production. The chapters presented in this book include original research and review articles. I hope the research presented in this book will help to advance the use of biomass for bioenergy production and valorization. The key features of the book are: Providing information on biomass volume estimation using direct, nondestructive and remote sensing methods Biomass valorization for energy using thermochemical (gasification and pyrolysis) and biochemical (fermentation) conversion processes.

Book Bioeconomy

    Book Details:
  • Author : Iris Lewandowski
  • Publisher : Springer
  • Release : 2017-12-11
  • ISBN : 3319681524
  • Pages : 356 pages

Download or read book Bioeconomy written by Iris Lewandowski and published by Springer. This book was released on 2017-12-11 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license. This book defines the new field of "Bioeconomy" as the sustainable and innovative use of biomass and biological knowledge to provide food, feed, industrial products, bioenergy and ecological services. The chapters highlight the importance of bioeconomy-related concepts in public, scientific, and political discourse. Using an interdisciplinary approach, the authors outline the dimensions of the bioeconomy as a means of achieving sustainability. The authors are ideally situated to elaborate on the diverse aspects of the bioeconomy. They have acquired in-depth experience of interdisciplinary research through the university’s focus on “Bioeconomy”, its contribution to the Bioeconomy Research Program of the federal state of Baden-Württemberg, and its participation in the German Bioeconomy Council. With the number of bioeconomy-related projects at European universities rising, this book will provide graduate students and researchers with background information on the bioeconomy. It will familiarize scientific readers with bioeconomy-related terms and give scientific background for economists, agronomists and natural scientists alike.

Book Gasification Technologies

Download or read book Gasification Technologies written by John Rezaiyan and published by CRC Press. This book was released on 2005-04-08 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: In contrast to traditional combustion, gasification technologies offer the potential for converting coal and low or negative-value feedstocks, such as petroleum coke and various waste materials into usable energy sources or chemicals. With a growing number of companies operating and marketing systems based on gasification concepts worldwide, this b

Book Renewable Energy Sources and Climate Change Mitigation

Download or read book Renewable Energy Sources and Climate Change Mitigation written by Ottmar Edenhofer and published by . This book was released on 2012 with total page 1076 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Intergovernmental Panel on Climate Change Special Report (IPCC-SRREN) assesses the potential role of renewable energy in the mitigation of climate change. It covers the six most important renewable energy sources - bioenergy, solar, geothermal, hydropower, ocean and wind energy - as well as their integration into present and future energy systems. It considers the environmental and social consequences associated with the deployment of these technologies and presents strategies to overcome technical as well as non-technical obstacles to their application and diffusion. SRREN brings a broad spectrum of technology-specific experts together with scientists studying energy systems as a whole. Prepared following strict IPCC procedures, it presents an impartial assessment of the current state of knowledge: it is policy relevant but not policy prescriptive. SRREN is an invaluable assessment of the potential role of renewable energy for the mitigation of climate change for policymakers, the private sector and academic researchers.

Book Biomass Processing for Biofuels  Bioenergy and Chemicals

Download or read book Biomass Processing for Biofuels Bioenergy and Chemicals written by Wei-Hsin Chen and published by MDPI. This book was released on 2020-05-23 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomass can be used to produce renewable electricity, thermal energy, transportation fuels (biofuels), and high-value functional chemicals. As an energy source, biomass can be used either directly via combustion to produce heat or indirectly after it is converted to one of many forms of bioenergy and biofuel via thermochemical or biochemical pathways. The conversion of biomass can be achieved using various advanced methods, which are broadly classified into thermochemical conversion, biochemical conversion, electrochemical conversion, and so on. Advanced development technologies and processes are able to convert biomass into alternative energy sources in solid (e.g., charcoal, biochar, and RDF), liquid (biodiesel, algae biofuel, bioethanol, and pyrolysis and liquefaction bio-oils), and gaseous (e.g., biogas, syngas, and biohydrogen) forms. Because of the merits of biomass energy for environmental sustainability, biofuel and bioenergy technologies play a crucial role in renewable energy development and the replacement of chemicals by highly functional biomass. This book provides a comprehensive overview and in-depth technical research addressing recent progress in biomass conversion processes. It also covers studies on advanced techniques and methods for bioenergy and biofuel production.

Book Biomass Utilization

    Book Details:
  • Author : Wilfred Cote
  • Publisher : Springer Science & Business Media
  • Release : 2013-12-01
  • ISBN : 1475708335
  • Pages : 720 pages

Download or read book Biomass Utilization written by Wilfred Cote and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume represents the culmination of nearly three years of planning, organizing and carrying out of a NATO Ad vanced Study Institute on Biomass Utilization. The effort was initi ated by Dr. Harry Sobel, then Editor of Biosources Digest, and a steering committee representing the many disciplines that this field brings together. . When the fiscal and logistical details of the original plan could not be worked out, the idea was temporarily suspended. In the spring of 1982, the Renewable Materials Institute of the State University of New York at the College of Environmental Science and Forestry in Syracuse, New York revived the plan. A number of modifications had to be made, including the venue which was changed from the U.S.A. to Portugal. Additional funding beyond the basic support provided by the Scientific Affairs Division of NATO had to be obtained. Ul timately there were supplementary grants from the Foundation for Microbiology and the Anne S. Richardson Fund to assist student participants. The New York State College of Forestry Foundation, Inc. provided major support through the Renewable Ma terials Institute. The ASI was held in Alcabideche, Portugal from September 26 to October 9, 1982. Eighty participants including fifteen principal lecturers were assembled at the Hotel Sintra Estoril for the program that was organized as a comprehensive course on biomass utilization. The main lectures were supplemented by relevant short papers offered by the participants.

Book Applications of Biochar for Environmental Safety

Download or read book Applications of Biochar for Environmental Safety written by Ahmed Abdelhafez and published by BoD – Books on Demand. This book was released on 2020-07-22 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biochar is a carbon-rich material produced from the pyrolysis of organic materials from agricultural and forestry biomass at a relatively low temperature in the absence of oxygen. As such, it has potential for solving many agricultural and environmental problems.This book is divided into five sections: “Introduction,” “Production and Legislation of Biochar,” “Applications of Biochar for Soil Fertility Improvement,” “Role of Biochar for Soil Remediation and Ameliorating Salinity Effects” and “Applications of Biochar for Water Treatment.” Chapters address topics such as the pros and cons of biochar, its production, and its role in remediating and treating contaminated soils and water.

Book Preparing for Future Products of Biotechnology

Download or read book Preparing for Future Products of Biotechnology written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2017-07-28 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Between 1973 and 2016, the ways to manipulate DNA to endow new characteristics in an organism (that is, biotechnology) have advanced, enabling the development of products that were not previously possible. What will the likely future products of biotechnology be over the next 5â€"10 years? What scientific capabilities, tools, and/or expertise may be needed by the regulatory agencies to ensure they make efficient and sound evaluations of the likely future products of biotechnology? Preparing for Future Products of Biotechnology analyzes the future landscape of biotechnology products and seeks to inform forthcoming policy making. This report identifies potential new risks and frameworks for risk assessment and areas in which the risks or lack of risks relating to the products of biotechnology are well understood.

Book Microbial Cell Factories Engineering for Production of Biomolecules

Download or read book Microbial Cell Factories Engineering for Production of Biomolecules written by Vijai Singh and published by Academic Press. This book was released on 2021-02-13 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microbial Cell Factories Engineering for Production of Biomolecules presents a compilation of chapters written by eminent scientists worldwide. Sections cover major tools and technologies for DNA synthesis, design of biosynthetic pathways, synthetic biology tools, biosensors, cell-free systems, computer-aided design, OMICS tools, CRISPR/Cas systems, and many more. Although it is not easy to find relevant information collated in a single volume, the book covers the production of a wide range of biomolecules from several MCFs, including Escherichia coli, Bacillus subtilis, Pseudomonas putida, Streptomyces, Corynebacterium, Cyanobacteria, Saccharomyces cerevisiae, Pichia pastoris and Yarrowia lipolytica, and algae, among many others. This will be an excellent platform from which scientific knowledge can grow and widen in MCF engineering research for the production of biomolecules. Needless to say, the book is a valuable source of information not only for researchers designing cell factories, but also for students, metabolic engineers, synthetic biologists, genome engineers, industrialists, stakeholders and policymakers interested in harnessing the potential of MCFs in several fields. Offers basic understanding and a clear picture of various MCFs Explains several tools and technologies, including DNA synthesis, synthetic biology tools, genome editing, biosensors, computer-aided design, and OMICS tools, among others Harnesses the potential of engineered MCFs to produce a wide range of biomolecules for industrial, therapeutic, pharmaceutical, nutraceutical and biotechnological applications Highlights the advances, challenges, and future opportunities in designing MCFs