EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Biomarkers and Therapeutic Targets of Reprogrammed Tumor Metabolism

Download or read book Biomarkers and Therapeutic Targets of Reprogrammed Tumor Metabolism written by Wei Zhao and published by Frontiers Media SA. This book was released on 2022-05-10 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Cancer Cell Metabolism  A Potential Target for Cancer Therapy

Download or read book Cancer Cell Metabolism A Potential Target for Cancer Therapy written by Dhruv Kumar and published by Springer Nature. This book was released on 2020-02-13 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book illustrates various aspects of cancer cell metabolism, including metabolic regulation in solid tumours vs. non-solid tumours, the molecular pathways involved in its metabolism, and the role of the tumour microenvironment in the regulation of cancer cell metabolism. It summarizes the complexity of cancer cell metabolism in terms of the switch from anaerobic to aerobic glycolysis and how mitochondrial damage promotes aerobic glycolysis in cancer cells. The respective chapters provide the latest information on the metabolic remodelling of cancer cells and elucidate the important role of the signalling pathways in reprogramming of cancer cell metabolism. In addition, the book highlights the role of autophagy in cancer cell metabolism, and how metabolic crosstalk between cancer cells and cancer-associated fibroblasts promotes cancer cell progression. In closing, it summarizes recent advancements in drug development through targeting cancer metabolism.

Book Metabolism in Cancer

    Book Details:
  • Author : Thorsten Cramer
  • Publisher : Springer
  • Release : 2016-08-24
  • ISBN : 3319421182
  • Pages : 272 pages

Download or read book Metabolism in Cancer written by Thorsten Cramer and published by Springer. This book was released on 2016-08-24 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents concise chapters written by internationally respected experts on various important aspects of cancer-associated metabolism, offering a comprehensive overview of the central features of this exciting research field. The discovery that tumor cells display characteristic alterations of metabolic pathways has significantly changed our understanding of cancer: while the first description of tumor-specific changes in cellular energetics was published more than 90 years ago, the causal significance of this observation for the pathogenesis of cancer was only discovered in the post-genome era. The first 10 years of the twenty-first century were characterized by rapid advances in our grasp of the functional role of cancer-specific metabolism as well as the underlying molecular pathways. Various unanticipated interrelations between metabolic alterations and cancer-driving pathways were identified and currently await translation into diagnostic and therapeutic applications. Yet the speed, quantity, and complexity of these new discoveries make it difficult for researchers to keep up to date with the latest developments, an issue this book helps to remedy.

Book Exploring Cancer Metabolic Reprogramming through Molecular Imaging

Download or read book Exploring Cancer Metabolic Reprogramming through Molecular Imaging written by Franca Podo and published by Frontiers Media SA. This book was released on 2017-07-27 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The inclusion of oncogene-driven reprogramming of energy metabolism within the list of cancer hallmarks (Hanahan and Weinberg, Cell 2000, 2011) has provided major impetus to further investigate the existence of a much wider metabolic rewiring in cancer cells, which not only includes deregulated cellular bioenergetics, but also encompasses multiple links with a more comprehensive network of altered biochemical pathways. This network is currently held responsible for redirecting carbon and phosphorus fluxes through the biosynthesis of nucleotides, amino acids, lipids and phospholipids and for the production of second messengers essential to cancer cells growth, survival and invasiveness in the hostile tumor environment. The capability to develop such a concerted rewiring of biochemical pathways is a versatile tool adopted by cancer cells to counteract the host defense and eventually resist the attack of anticancer treatments. Integrated efforts elucidating key mechanisms underlying this complex cancer metabolic reprogramming have led to the identification of new signatures of malignancy that are providing a strong foundation for improving cancer diagnosis and monitoring tumor response to therapy using appropriate molecular imaging approaches. In particular, the recent evolution of positron emission tomography (PET), magnetic resonance spectroscopy (MRS), spectroscopic imaging (MRSI), functional MR imaging (fMRI) and optical imaging technologies, combined with complementary cellular imaging approaches, have created new ways to explore and monitor the effects of metabolic reprogramming in cancer at clinical and preclinical levels. Thus, the progress of high-tech engineering and molecular imaging technologies, combined with new generation genomic, proteomic and phosphoproteomic methods, can significantly improve the clinical effectiveness of image-based interventions in cancer and provide novel insights to design and validate new targeted therapies. The Frontiers in Oncology Research Topic “Exploring Cancer Metabolic Reprogramming Through Molecular Imaging” focusses on current achievements, challenges and needs in the application of molecular imaging methods to explore cancer metabolic reprogramming, and evaluate its potential impact on clinical decisions and patient outcome. A series of reviews and perspective articles, along with original research contributions on humans and on preclinical models have been concertedly included in the Topic to build an open forum on perspectives, present needs and future challenges of this cutting-edge research area.

Book The Heterogeneity of Cancer Metabolism

Download or read book The Heterogeneity of Cancer Metabolism written by Anne Le and published by Springer. This book was released on 2018-06-26 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.

Book Cancer Metabolism  Molecular Targeting and Implications for Therapy

Download or read book Cancer Metabolism Molecular Targeting and Implications for Therapy written by Shanmugasundaram Ganapathy-Kanniappan and published by Frontiers Media SA. This book was released on 2017-11-03 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Development of an effective anticancer therapeutic necessitates the selection of cancer-related or cancer-specific pathways or molecules that are sensitive to intervention. Several such critical yet sensitive molecular targets have been recognized, and their specific antagonists or inhibitors validated as potential therapeutics in preclinical models. Yet, majority of anticancer principles or therapeutics show limited success in the clinical translation. Thus, the need for the development of an effective therapeutic strategy persists.

“Altered energy metabolism” in cancer is one of the earliest known biochemical phenotypes which dates back to the early 20th century. The German scientist, Otto Warburg and his team (Warburg, Wind, Negelein 1926; Warburg, Wind, Negelein 1927) provided the first evidence that the glucose metabolism of cancer cells diverge from normal cells. This phenomenal discovery on deregulated glucose metabolism or cellular bioenergetics is frequently witnessed in majority of solid malignancies. Currently, the altered glucose metabolism is used in the clinical diagnosis of cancer through positron emission tomography (PET) imaging. Thus, the “deregulated bioenergetics” is a clinically relevant metabolic signature of cancer cells, hence recognized as one of the hallmarks of cancer (Hanahan and Weinberg 2011). Accumulating data unequivocally demonstrate that, besides cellular bioenergetics, cancer metabolism facilitates several cancer-related processes including metastasis, therapeutic resistance and so on. Recent reports also demonstrate the oncogenic regulation of glucose metabolism (e.g. glycolysis) indicating a functional link between neoplastic growth and cancer metabolism. Thus, cancer metabolism, which is already exploited in cancer diagnosis, remains an attractive target for therapeutic intervention as well. The Frontiers in Oncology Research Topic “Cancer Metabolism: Molecular Targeting and Implications for Therapy” emphases on recent advances in our understanding of metabolic reprogramming in cancer, and the recognition of key molecules for therapeutic targeting. Besides, the topic also deliberates the implications of metabolic targeting beyond the energy metabolism of cancer. The research topic integrates a series of reviews, mini-reviews and original research articles to share current perspectives on cancer metabolism, and to stimulate an open forum to discuss potential challenges and future directions of research necessary to develop effective anticancer strategies. Acknowledgment I sincerely thank the Frontiers for providing the opportunity and constant support throughout the process of this research topic and eBook production. I gratefully acknowledge all the authors for their valuable contributions. Finally, I would like to thank my brother, Saravana Kumar, G.K., whose personal sacrifices and unflinching encouragement made my career in science possible. References: Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: The next generation. Cell. 144(5):646-74. Warburg O, Wind F, Negelein E. 1926. Über den stoffwechsel der tumoren in körper. Klinische Wochenschrift. 5:829-32. Warburg O, Wind F, Negelein E. 1927. The metabolism of tumors in the body. J Gen Physiol. 8(6):519-30.

Book Tumor Microenvironment

    Book Details:
  • Author : Jacinta Serpa
  • Publisher : Springer Nature
  • Release : 2020-03-04
  • ISBN : 3030340252
  • Pages : 430 pages

Download or read book Tumor Microenvironment written by Jacinta Serpa and published by Springer Nature. This book was released on 2020-03-04 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: The way a cell undergoes malignant transformation should meet their capacity of surviving in the microenvironment of the organ where the cancer will develop. Metabolic adaptation is for sure one of the criteria that must be accomplished, driven by metabolic plasticity that allows the adaptation of cancer cells to the availability of energy and biomass sources that will sustain cell survival and proliferation. Each human organ has a particular microenvironment which depends on several cell types and in some cases also on symbiotic microorganisms. These biological partners are constantly sharing organic compounds and signaling molecules that will control mitogenesis, cell death and differentiation, accounting for the organ's function. Nevertheless, cancer cells are capable of taking advantage of this metabolic and signaling microenvironmental dynamics. In this book, we intend to present the different components of the microenvironment driving the metabolic fitness of cancer cells. The metabolic changes required for establishing a tumor in a given microenvironment and how these metabolic changes limit the response to drugs will generally be the major items addressed. It is important to mention not only aspects of the microenvironment that stimulate metabolic changes and that select better adapted tumor cells, but also how this regulation of cell plasticity is made. Thus, the signaling pathways that orchestrate and are orchestrated throughout this panoply of metabolic rearrangements will also be addressed in this book. The subjects will be presented from the conceptual point of view of the cross-cancer mechanisms and also particularizing some models that can be examples and enlightening within the different areas.

Book The Tumour Microenvironment

Download or read book The Tumour Microenvironment written by Jamie A. Goode and published by John Wiley & Sons. This book was released on 2001-11-28 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ergebnisse von in vitro-Studien lassen vermuten, dass sich der pH-Wert in einem Tumor auf die Wirksamkeit von Chemo- oder Strahlentherapien auswirken kann. Wie aber sieht die Beziehung zwischen der Tumorentwicklung und dem pH-Wert aus? Können ein niedriger pH-Wert oder ein Sauerstoffmangel die Carcinogenese hemmen? Wo bieten sich therapeutische Ansätze? Anwort auf diese und andere Fragen finden Sie in diesem Band. In interdisziplinärer Weise wurden Beiträge aus der Grundlagenforschung und der klinischen Praxis zusammengetragen.

Book Examining Metabolic Vulnerabilities for Cancer Therapy

Download or read book Examining Metabolic Vulnerabilities for Cancer Therapy written by Alba Luengo and published by . This book was released on 2018 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metabolic reprogramming is essential for cancer cells to balance energetics, maintain redox homeostasis, and synthesize biosynthetic precursors. Many chemotherapeutics that target metabolism are essential components of standard cancer treatment regimens, arguing that there is a therapeutic window to target the metabolic dependencies of cancer cells. However, the use of these drugs as cancer therapies was determined empirically, and rational approaches to directly target the metabolism of cancer cells, especially reprogrammed glucose metabolism, have proved challenging, in part because it is not well understood which metabolic processes are most important for cancer cell proliferation and survival. The goal of this dissertation is to explore metabolic pathways preferentially used by cancer cells in order to identify potential tumor dependencies that could be exploited for clinical benefit. We first determined that production of reactive byproducts is an indirect consequence of the altered glucose metabolism of cancer cells, which suggests that clinically targeting secondary effects of reprogrammed tumor metabolism could be an approach for designing novel cancer treatments. Next, we found that a molecular driver for the altered glucose metabolism of cancer cells is limited electron acceptor availability, suggesting that interventions that further restrict the oxidative capacity of tumors could also have anticancer efficacy. Finally, we interrogated the metabolic fluxes of breast cancers proliferating in different microenvironments and determined that tumors in the brain parenchyma display enhanced lipid biosynthesis, which could guide therapeutic strategies to treat cancer based on tumor site. Collectively, these studies contribute to an understanding of how the reprogrammed metabolism of cancer cells introduces targetable dependencies, with the aim of optimizing cancer therapies.

Book The Supramolecular Organization of Cancer Metabolism

Download or read book The Supramolecular Organization of Cancer Metabolism written by Cristina Balcells Nadal and published by . This book was released on 2020 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Metastasis and drug resistance represent the two main causes of therapeutic failure in oncology. In the present dissertation, the interplay between them has been interrogated using metabolomics, systems biology and biophysical approaches, in an attempt to find common phenotypic adaptations and metabolic vulnerabilities of metastatic and resistant cancer cells, potentially exploitable in novel combination therapies. The obtained results unveil that highly metastatic e-CSC phenotypes of CRPC present particular metabolic vulnerabilities that can potentially lead to establishing putative biomarkers and metabolic targets that are specific for PCa subsets with high tumorigenic potential. Moreover, by generating isogenic cell models of multiplatinum resistance in CRPC and CRC we also identified that metastatic solid tumors with originally opposed metabolic profiles can lead to different metabolic adaptations as they acquire platinum resistance, but that a common metabolic signature of acquired platinum resistance arises, which also includes alterations in proline and one carbon metabolism, glutathione synthesis and ROS production. In addition to characterizing in deep the metabolic reprogramming associated to resistance to platinum compounds already used in the clinics, we also explored the possibility to design of novel platinum drugs able to counter platinum-resistant tumors. In this regard, we identified novel families of cyclometallated platinum (II) and platinum (IV) compounds exhibit strong antiproliferative effects in the low micromolar range against a wide variety of solid tumors. The leading compounds of each series also exhibit remarkable selectivity for cancer cells and the capacity to arrest the cell cycle at S and G2/M phases, induce apoptosis and increase intracellular ROS levels. The multiple combinations of equatorial and axial ligands explored in this work, allowed us to conclude that octahedral Pt (IV) compounds containing tridentate [C,N,N'] ligands are the optimal design to improve efficacy and selectivity against cancer cell lines. Remarkably, we have also identified that these novel cyclometallated Pt (IV) exhibit a complete absence of cross-resistance with the platinum-resistant CRC and CRPC models generated in this work.Indeed, platinum-based chemotherapy can severely affect internal cell architecture, causing fluctuations in the levels of macromolecular crowding inside cells and having an impact on the supramolecular organization of cell metabolism. In turn, this has been proved to have a profound impact on the kinetic behavior of metabolic enzymes that govern the rate of metabolic pathways that we have identified as important throughout this work.Thus, we have explored the kinetic behavior of lactate dehydrogenase (LDH), as a representative of aerobic glycolysis, under the presence of globular obstacles that do not introduce specific interactions with either LDH or its substrates, dextran polymers, obtaining that LDH kinetics is impaired in an obstacle size- and concentration-dependent manner. Additionally, we unveiled that LDH kinetic behavior shifts from activation control to diffusion control as crowding increases, implying that the behavior of LDH inside cells could be significantly different than previous dilute solution kinetic studies of this enzyme had predicted. On the other hand, the effect of macromolecular crowding on glutaminolysis had not been explored prior to this work. By studying the kinetic behavior of glutamate dehydrogenase (GLDH) in crowded media and characterizing its negative cooperativity, we have concluded that its kinetics is impaired by crowding in an obstacle size- and concentration-dependent manner, but that negative cooperativity is not significantly altered by macromolecular crowding. The actual impact of macromolecular crowding on cell metabolism has been scarcely explored and we are just scratching the surface of the understanding of the multiple implications that this phenomenon may entail for cell physiology and, in particular, for the metabolic alterations of cancer cells. Our observations throughout this work will hopefully have contributed to set grounds onto this enthralling enterprise, as long as meaningfully contributed to encounter valuable therapeutic tools against metastatic CRPC and CRC that can circumvent platinum resistance, both with new generations of platinum compounds and novel metabolic targets that selectively target metastatic solid tumors." -- TDX.

Book Mitochondria and Cancer

    Book Details:
  • Author : Keshav Singh
  • Publisher : Springer Science & Business Media
  • Release : 2009-04-05
  • ISBN : 0387848355
  • Pages : 294 pages

Download or read book Mitochondria and Cancer written by Keshav Singh and published by Springer Science & Business Media. This book was released on 2009-04-05 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nearly a century of scientific research has revealed that mitochondrial dysfunction is one of the most common and consistent phenotypes of cancer cells. A number of notable differences in the mitochondria of normal and cancer cells have been described. These include differences in mitochondrial metabolic activity, molecular composition of mitochondria and mtDNA sequence, as well as in alteration of nuclear genes encoding mitochondrial proteins. This book, Mitochondria and Cancer, edited by Keshav K. Singh and Leslie C. Costello, presents thorough analyses of mitochondrial dysfunction as one of the hallmarks of cancer, discusses the clinical implications of mitochondrial defects in cancer, and as unique cellular targets for novel and selective anti-cancer therapy.

Book Cancer as a Metabolic Disease

Download or read book Cancer as a Metabolic Disease written by Thomas Seyfried and published by John Wiley & Sons. This book was released on 2012-05-18 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book addresses controversies related to the origins of cancer and provides solutions to cancer management and prevention. It expands upon Otto Warburg's well-known theory that all cancer is a disease of energy metabolism. However, Warburg did not link his theory to the "hallmarks of cancer" and thus his theory was discredited. This book aims to provide evidence, through case studies, that cancer is primarily a metabolic disease requring metabolic solutions for its management and prevention. Support for this position is derived from critical assessment of current cancer theories. Brain cancer case studies are presented as a proof of principle for metabolic solutions to disease management, but similarities are drawn to other types of cancer, including breast and colon, due to the same cellular mutations that they demonstrate.

Book Tumor Cell Metabolism

    Book Details:
  • Author : Sybille Mazurek
  • Publisher : Springer
  • Release : 2015-01-19
  • ISBN : 3709118247
  • Pages : 373 pages

Download or read book Tumor Cell Metabolism written by Sybille Mazurek and published by Springer. This book was released on 2015-01-19 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: The four sections of this book cover cell and molecular biology of tumor metabolism, metabolites, tumor microenvironment, diagnostics and epigenetics. Written by international experts, it provides a thorough insight into and understanding of tumor cell metabolism and its role in tumor biology. The book is intended for scientists in cancer cell and molecular biology, scientists in drug and diagnostic development, as well as for clinicians and oncologists.

Book Precision Medicine in Oncology

Download or read book Precision Medicine in Oncology written by Bulent Aydogan and published by John Wiley & Sons. This book was released on 2020-11-02 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: A FRESH EXAMINATION OF PRECISION MEDICINE'S INCREASINGLY PROMINENT ROLE IN THE FIELD OF ONCOLOGY Precision medicine takes into account each patient's specific characteristics and requirements to arrive at treatment plans that are optimized towards the best possible outcome. As the field of oncology continues to advance, this tailored approach is becoming more and more prevalent, channelling data on genomics, proteomics, metabolomics and other areas into new and innovative methods of practice. Precision Medicine in Oncology draws together the essential research driving the field forward, providing oncology clinicians and trainees alike with an illuminating overview of the technology and thinking behind the breakthroughs currently being made. Topics covered include: Biologically-guided radiation therapy Informatics for precision medicine Molecular imaging Biomarkers for treatment assessment Big data Nanoplatforms Casting a spotlight on this emerging knowledge base and its impact upon the management of tumors, Precision Medicine in Oncology opens up new possibilities and ways of working – not only for oncologists, but also for molecular biologists, radiologists, medical geneticists, and others.

Book Cell Death

    Book Details:
  • Author : Tobias Ntuli
  • Publisher : BoD – Books on Demand
  • Release : 2015-12-16
  • ISBN : 9535122363
  • Pages : 448 pages

Download or read book Cell Death written by Tobias Ntuli and published by BoD – Books on Demand. This book was released on 2015-12-16 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of selected and relevant research, concerning the developments within the Cell Death field of study. Each contribution comes as a separate chapter complete in itself but directly related to the books topics and objectives. The target audience comprises scholars and specialists in the field.

Book Ovarian Cancer Biomarkers

Download or read book Ovarian Cancer Biomarkers written by Khalid El Bairi and published by Springer Nature. This book was released on 2021-10-09 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprehensively summarizes the biology, etiology, and pathology of ovarian cancer and explores the role of deep molecular and cellular profiling in the advancement of precision medicine. The initial chapter discusses our current understanding of the origin, development, progression and tumorigenesis of ovarian cancer. In turn, the book highlights the development of resistance, disease occurrence, and poor prognosis that are the hallmarks of ovarian cancer. The book then reviews the role of deep molecular and cellular profiling to overcome challenges that are associated with the treatment of ovarian cancer. It explores the use of genome-wide association analysis to identify genetic variants for the evaluation of ovarian carcinoma risk and prognostic prediction. Lastly, it highlights various diagnostic and prognostic ovarian cancer biomarkers for the development of molecular-targeted therapy.

Book Advanced Healthcare Materials

Download or read book Advanced Healthcare Materials written by Ashutosh Tiwari and published by John Wiley & Sons. This book was released on 2014-05-09 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers a comprehensive and interdisciplinary view of cutting-edge research on advanced materials for healthcare technology and applications Advanced healthcare materials are attracting strong interest in fundamental as well as applied medical science and technology. This book summarizes the current state of knowledge in the field of advanced materials for functional therapeutics, point-of-care diagnostics, translational materials, and up-and-coming bioengineering devices. Advanced Healthcare Materials highlights the key features that enable the design of stimuli-responsive smart nanoparticles, novel biomaterials, and nano/micro devices for either diagnosis or therapy, or both, called theranostics. It also presents the latest advancements in healthcare materials and medical technology. The senior researchers from global knowledge centers have written topics including: State-of-the-art of biomaterials for human health Micro- and nanoparticles and their application in biosensors The role of immunoassays Stimuli-responsive smart nanoparticles Diagnosis and treatment of cancer Advanced materials for biomedical application and drug delivery Nanoparticles for diagnosis and/or treatment of Alzheimers disease Hierarchical modelling of elastic behavior of human dental tissue Biodegradable porous hydrogels Hydrogels in tissue engineering, drug delivery, and wound care Modified natural zeolites Supramolecular hydrogels based on cyclodextrin poly(pseudo)rotaxane Polyhydroxyalkanoate-based biomaterials Biomimetic molecularly imprinted polymers