EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Primer in Biological Data Analysis and Visualization Using R

Download or read book A Primer in Biological Data Analysis and Visualization Using R written by Gregg Hartvigsen and published by Columbia University Press. This book was released on 2014-02-18 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: R is the most widely used open-source statistical and programming environment for the analysis and visualization of biological data. Drawing on Gregg Hartvigsen's extensive experience teaching biostatistics and modeling biological systems, this text is an engaging, practical, and lab-oriented introduction to R for students in the life sciences. Underscoring the importance of R and RStudio in organizing, computing, and visualizing biological statistics and data, Hartvigsen guides readers through the processes of entering data into R, working with data in R, and using R to visualize data using histograms, boxplots, barplots, scatterplots, and other common graph types. He covers testing data for normality, defining and identifying outliers, and working with non-normal data. Students are introduced to common one- and two-sample tests as well as one- and two-way analysis of variance (ANOVA), correlation, and linear and nonlinear regression analyses. This volume also includes a section on advanced procedures and a chapter introducing algorithms and the art of programming using R.

Book Biological Data Analysis

Download or read book Biological Data Analysis written by John C. Fry and published by IRL Press. This book was released on 1993 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many biologists remain unfamiliar with statistical analysis and modelling, yet need to apply these techniques increasingly in their research. This volume describes how to analyze biological data, with commonly available software packages, without making errors which can invalidate results. Practical guidance is provided for planning the correct strategy for a variety of different statistical approaches and modelling problems and interpreting the results. Many examples of computer commands and output are given to illustrate the different analytical approaches. Biological Data Analysis: A Practical Approach has been designed specifically to allow researchers with only a minimal knowledge of statistics to understand a variety of statistical methods and apply them directly. The provision of data sets from several biological disciplines will make this book useful to all types of biologists.

Book The Analysis of Biological Data

Download or read book The Analysis of Biological Data written by Michael C. Whitlock and published by Macmillan Higher Education. This book was released on 2019-11-22 with total page 2074 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Analysis of Biological Data provides students with a practical foundation of statistics for biology students. Every chapter has several biological or medical examples of key concepts, and each example is prefaced by a substantial description of the biological setting. The emphasis on real and interesting examples carries into the problem sets where students have dozens of practice problems based on real data. The third edition features over 200 new examples and problems. These include new calculation practice problems, which guide the student step by step through the methods, and a greater number of examples and topics come from medical and human health research. Every chapter has been carefully edited for even greater clarity and ease of use. All the data sets, R scripts for all worked examples in the book, as well as many other teaching resources, are available to qualified instructors (see below).

Book Analysis of Biological Data

Download or read book Analysis of Biological Data written by Sanghamitra Bandyopadhyay and published by World Scientific. This book was released on 2007 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bioinformatics, a field devoted to the interpretation and analysis of biological data using computational techniques, has evolved tremendously in recent years due to the explosive growth of biological information generated by the scientific community. Soft computing is a consortium of methodologies that work synergistically and provides, in one form or another, flexible information processing capabilities for handling real-life ambiguous situations. Several research articles dealing with the application of soft computing tools to bioinformatics have been published in the recent past; however, they are scattered in different journals, conference proceedings and technical reports, thus causing inconvenience to readers, students and researchers. This book, unique in its nature, is aimed at providing a treatise in a unified framework, with both theoretical and experimental results, describing the basic principles of soft computing and demonstrating the various ways in which they can be used for analyzing biological data in an efficient manner. Interesting research articles from eminent scientists around the world are brought together in a systematic way such that the reader will be able to understand the issues and challenges in this domain, the existing ways of tackling them, recent trends, and future directions. This book is the first of its kind to bring together two important research areas, soft computing and bioinformatics, in order to demonstrate how the tools and techniques in the former can be used for efficiently solving several problems in the latter. Sample Chapter(s). Chapter 1: Bioinformatics: Mining the Massive Data from High Throughput Genomics Experiments (160 KB). Contents: Overview: Bioinformatics: Mining the Massive Data from High Throughput Genomics Experiments (H Tang & S Kim); An Introduction to Soft Computing (A Konar & S Das); Biological Sequence and Structure Analysis: Reconstructing Phylogenies with Memetic Algorithms and Branch-and-Bound (J E Gallardo et al.); Classification of RNA Sequences with Support Vector Machines (J T L Wang & X Wu); Beyond String Algorithms: Protein Sequence Analysis Using Wavelet Transforms (A Krishnan & K-B Li); Filtering Protein Surface Motifs Using Negative Instances of Active Sites Candidates (N L Shrestha & T Ohkawa); Distill: A Machine Learning Approach to Ab Initio Protein Structure Prediction (G Pollastri et al.); In Silico Design of Ligands Using Properties of Target Active Sites (S Bandyopadhyay et al.); Gene Expression and Microarray Data Analysis: Inferring Regulations in a Genomic Network from Gene Expression Profiles (N Noman & H Iba); A Reliable Classification of Gene Clusters for Cancer Samples Using a Hybrid Multi-Objective Evolutionary Procedure (K Deb et al.); Feature Selection for Cancer Classification Using Ant Colony Optimization and Support Vector Machines (A Gupta et al.); Sophisticated Methods for Cancer Classification Using Microarray Data (S-B Cho & H-S Park); Multiobjective Evolutionary Approach to Fuzzy Clustering of Microarray Data (A Mukhopadhyay et al.). Readership: Graduate students and researchers in computer science, bioinformatics, computational and molecular biology, artificial intelligence, data mining, machine learning, electrical engineering, system science; researchers in pharmaceutical industries.

Book Data Processing Handbook for Complex Biological Data Sources

Download or read book Data Processing Handbook for Complex Biological Data Sources written by Gauri Misra and published by Academic Press. This book was released on 2019-03-23 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Processing Handbook for Complex Biological Data provides relevant and to the point content for those who need to understand the different types of biological data and the techniques to process and interpret them. The book includes feedback the editor received from students studying at both undergraduate and graduate levels, and from her peers. In order to succeed in data processing for biological data sources, it is necessary to master the type of data and general methods and tools for modern data processing. For instance, many labs follow the path of interdisciplinary studies and get their data validated by several methods. Researchers at those labs may not perform all the techniques themselves, but either in collaboration or through outsourcing, they make use of a range of them, because, in the absence of cross validation using different techniques, the chances for acceptance of an article for publication in high profile journals is weakened. - Explains how to interpret enormous amounts of data generated using several experimental approaches in simple terms, thus relating biology and physics at the atomic level - Presents sample data files and explains the usage of equations and web servers cited in research articles to extract useful information from their own biological data - Discusses, in detail, raw data files, data processing strategies, and the web based sources relevant for data processing

Book Data Analytics in Bioinformatics

Download or read book Data Analytics in Bioinformatics written by Rabinarayan Satpathy and published by John Wiley & Sons. This book was released on 2021-01-20 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.

Book Topological Data Analysis for Genomics and Evolution

Download or read book Topological Data Analysis for Genomics and Evolution written by Raúl Rabadán and published by Cambridge University Press. This book was released on 2019-10-31 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biology has entered the age of Big Data. The technical revolution has transformed the field, and extracting meaningful information from large biological data sets is now a central methodological challenge. Algebraic topology is a well-established branch of pure mathematics that studies qualitative descriptors of the shape of geometric objects. It aims to reduce questions to a comparison of algebraic invariants, such as numbers, which are typically easier to solve. Topological data analysis is a rapidly-developing subfield that leverages the tools of algebraic topology to provide robust multiscale analysis of data sets. This book introduces the central ideas and techniques of topological data analysis and its specific applications to biology, including the evolution of viruses, bacteria and humans, genomics of cancer and single cell characterization of developmental processes. Bridging two disciplines, the book is for researchers and graduate students in genomics and evolutionary biology alongside mathematicians interested in applied topology.

Book Experimental Design and Data Analysis for Biologists

Download or read book Experimental Design and Data Analysis for Biologists written by Gerald Peter Quinn and published by Cambridge University Press. This book was released on 2002-03-21 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: Regression, analysis of variance, correlation, graphical.

Book Modern Analysis of Biological Data

Download or read book Modern Analysis of Biological Data written by Stanislav Pekár and published by Masarykova univerzita. This book was released on 2016-01-01 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kniha je zaměřena na regresní modely, konkrétně jednorozměrné zobecněné lineární modely (GLM). Je určena především studentům a kolegům z biologických oborů a vyžaduje pouze základní statistické vzdělání, jakým je např. jednosemestrový kurz biostatistiky. Text knihy obsahuje nezbytné minimum statistické teorie, především však řešení 18 reálných příkladů z oblasti biologie. Každý příklad je rozpracován od popisu a stanovení cíle přes vývoj statistického modelu až po závěr. K analýze dat je použit populární a volně dostupný statistický software R. Příklady byly záměrně vybrány tak, aby upozornily na leckteré problémy a chyby, které se mohou v průběhu analýzy dat vyskytnout. Zároveň mají čtenáře motivovat k tomu, jak o statistických modelech přemýšlet a jak je používat. Řešení příkladů si může čtenář vyzkoušet sám na datech, jež jsou dodávána spolu s knihou.

Book Analysis of Biological Networks

Download or read book Analysis of Biological Networks written by Björn H. Junker and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to biological networks and methods for their analysis Analysis of Biological Networks is the first book of its kind to provide readers with a comprehensive introduction to the structural analysis of biological networks at the interface of biology and computer science. The book begins with a brief overview of biological networks and graph theory/graph algorithms and goes on to explore: global network properties, network centralities, network motifs, network clustering, Petri nets, signal transduction and gene regulation networks, protein interaction networks, metabolic networks, phylogenetic networks, ecological networks, and correlation networks. Analysis of Biological Networks is a self-contained introduction to this important research topic, assumes no expert knowledge in computer science or biology, and is accessible to professionals and students alike. Each chapter concludes with a summary of main points and with exercises for readers to test their understanding of the material presented. Additionally, an FTP site with links to author-provided data for the book is available for deeper study. This book is suitable as a resource for researchers in computer science, biology, bioinformatics, advanced biochemistry, and the life sciences, and also serves as an ideal reference text for graduate-level courses in bioinformatics and biological research.

Book Statistical Methods in Biology

Download or read book Statistical Methods in Biology written by S.J. Welham and published by CRC Press. This book was released on 2014-08-22 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written in simple language with relevant examples, this illustrative introductory book presents best practices in experimental design and simple data analysis. Taking a practical and intuitive approach, it only uses mathematical formulae to formalize the methods where necessary and appropriate. The text features extended discussions of examples that include real data sets arising from research. The authors analyze data in detail to illustrate the use of basic formulae for simple examples while using the GenStat statistical package for more complex examples. Each chapter offers instructions on how to obtain the example analyses in GenStat and R.

Book Biological Sequence Analysis

Download or read book Biological Sequence Analysis written by Richard Durbin and published by Cambridge University Press. This book was released on 1998-04-23 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.

Book Statistical Design and Analysis of Biological Experiments

Download or read book Statistical Design and Analysis of Biological Experiments written by Hans-Michael Kaltenbach and published by Springer Nature. This book was released on 2021-04-15 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This richly illustrated book provides an overview of the design and analysis of experiments with a focus on non-clinical experiments in the life sciences, including animal research. It covers the most common aspects of experimental design such as handling multiple treatment factors and improving precision. In addition, it addresses experiments with large numbers of treatment factors and response surface methods for optimizing experimental conditions or biotechnological yields. The book emphasizes the estimation of effect sizes and the principled use of statistical arguments in the broader scientific context. It gradually transitions from classical analysis of variance to modern linear mixed models, and provides detailed information on power analysis and sample size determination, including ‘portable power’ formulas for making quick approximate calculations. In turn, detailed discussions of several real-life examples illustrate the complexities and aberrations that can arise in practice. Chiefly intended for students, teachers and researchers in the fields of experimental biology and biomedicine, the book is largely self-contained and starts with the necessary background on basic statistical concepts. The underlying ideas and necessary mathematics are gradually introduced in increasingly complex variants of a single example. Hasse diagrams serve as a powerful method for visualizing and comparing experimental designs and deriving appropriate models for their analysis. Manual calculations are provided for early examples, allowing the reader to follow the analyses in detail. More complex calculations rely on the statistical software R, but are easily transferable to other software. Though there are few prerequisites for effectively using the book, previous exposure to basic statistical ideas and the software R would be advisable.

Book Data Analysis for the Life Sciences with R

Download or read book Data Analysis for the Life Sciences with R written by Rafael A. Irizarry and published by CRC Press. This book was released on 2016-10-04 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained.

Book Data Analysis in Biochemistry and Biophysics

Download or read book Data Analysis in Biochemistry and Biophysics written by Magar Mager and published by Elsevier. This book was released on 2012-12-02 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Analysis in Biochemistry and Biophysics describes the techniques how to derive the most amount of quantitative and statistical information from data gathered in enzyme kinetics, protein-ligand equilibria, optical rotatory dispersion, chemical relaxation methods. This book focuses on the determination and analysis of parameters in different models that are used in biochemistry, biophysics, and molecular biology. The Michaelis-Menten equation can explain the process to obtain the maximum amount of information by determining the parameters of the model. This text also explains the fundamentals present in hypothesis testing, and the equation that represents the statistical aspects of a linear model occurring frequently in this field of testing. This book also analyzes the ultraviolet spectra of nucleic acids, particularly, to establish the composition of melting regions of nucleic acids. The investigator can use the matrix rank analysis to determine the spectra to substantiate systems whose functions are not known. This text also explains flow techniques and relaxation methods associated with rapid reactions to determine transient kinetic parameters. This book is suitable for molecular biologists, biophysicists, physiologists, biochemists, bio- mathematicians, statisticians, computer programmers, and investigators involved in related sciences

Book Biological Distance Analysis

    Book Details:
  • Author : Marin A. Pilloud
  • Publisher : Academic Press
  • Release : 2016-07-08
  • ISBN : 0128019719
  • Pages : 520 pages

Download or read book Biological Distance Analysis written by Marin A. Pilloud and published by Academic Press. This book was released on 2016-07-08 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biological Distance Analysis: Forensic and Bioarchaeological Perspectives synthesizes research within the realm of biological distance analysis, highlighting current work within the field and discussing future directions. The book is divided into three main sections. The first section clearly outlines datasets and methods within biological distance analysis, beginning with a brief history of the field and how it has progressed to its current state. The second section focuses on approaches using the individual within a forensic context, including ancestry estimation and case studies. The final section concentrates on population-based bioarchaeological approaches, providing key techniques and examples from archaeological samples. The volume also includes an appendix with additional resources available to those interested in biological distance analyses. - Defines datasets and how they are used within biodistance analysis - Applies methodology to individual and population studies - Bridges the sub-fields of forensic anthropology and bioarchaeology - Highlights current research and future directions of biological distance analysis - Identifies statistical programs and datasets for use in biodistance analysis - Contains cases studies and thorough index for those interested in biological distance analyses

Book An Introduction to Statistical Genetic Data Analysis

Download or read book An Introduction to Statistical Genetic Data Analysis written by Melinda C. Mills and published by MIT Press. This book was released on 2020-02-18 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to modern applied statistical genetic data analysis, accessible to those without a background in molecular biology or genetics. Human genetic research is now relevant beyond biology, epidemiology, and the medical sciences, with applications in such fields as psychology, psychiatry, statistics, demography, sociology, and economics. With advances in computing power, the availability of data, and new techniques, it is now possible to integrate large-scale molecular genetic information into research across a broad range of topics. This book offers the first comprehensive introduction to modern applied statistical genetic data analysis that covers theory, data preparation, and analysis of molecular genetic data, with hands-on computer exercises. It is accessible to students and researchers in any empirically oriented medical, biological, or social science discipline; a background in molecular biology or genetics is not required. The book first provides foundations for statistical genetic data analysis, including a survey of fundamental concepts, primers on statistics and human evolution, and an introduction to polygenic scores. It then covers the practicalities of working with genetic data, discussing such topics as analytical challenges and data management. Finally, the book presents applications and advanced topics, including polygenic score and gene-environment interaction applications, Mendelian Randomization and instrumental variables, and ethical issues. The software and data used in the book are freely available and can be found on the book's website.