EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Biofuels from Corn Stover  Pyrolytic Production and Catalytic Upgrading Studies

Download or read book Biofuels from Corn Stover Pyrolytic Production and Catalytic Upgrading Studies written by Jewel Alviar Capunitan and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to security issues in energy supply and environmental concerns, renewable energy production from biomass becomes an increasingly important area of study. Thus, thermal conversion of biomass via pyrolysis and subsequent upgrading procedures were explored, in an attempt to convert an abundant agricultural residue, corn stover, into potential bio-fuels. Pyrolysis of corn stover was carried out at 400, 500 and 600oC and at moderate pressure. Maximum bio-char yield of 37.3 wt.% and liquid product yield of 31.4 wt.% were obtained at 400oC while the gas yield was maximum at 600oC (21.2 wt.%). Bio-char characteristics (energy content, proximate and ultimate analyses) indicated its potential as alternative solid fuel. The bio-oil mainly consisted of phenolic compounds, with significant proportions of aromatic and aliphatic compounds. The gas product has energy content ranging from 10.1 to 21.7 MJ m-3, attributed to significant quantities of methane, hydrogen and carbon dioxide. Mass and energy conversion efficiencies indicated that majority of the mass and energy contained in the feedstock was transferred to the bio-char. Fractional distillation of the bio-oil at atmospheric and reduced pressure yielded approximately 40-45 wt.% heavy distillate (180-250oC) with significantly reduced moisture and total acid number (TAN) and greater energy content. Aromatic compounds and oxygenated compounds were distributed in the light and middle fractions while phenolic compounds were concentrated in the heavy fraction. Finally, hydrotreatment of the bio-oil and the heavy distillate using noble metal catalysts such as ruthenium and palladium on carbon support at 100 bar pressure, 4 hours reaction time and 200o or 300oC showed that ruthenium performed better at the higher temperature (300oC) and was more effective than palladium, giving about 25-26% deoxygenation. The hydrotreated product from the heavy distillate with ruthenium as catalyst at 300oC had the lowest oxygen content and exhibited better product properties (lower moisture, TAN, and highest heating value), and can be a potential feedstock for co-processing with crude oils in existing refineries. Major reactions involved were conversion of phenolics to aromatics and hydrogenation of ketones to alcohols. Results showed that pyrolysis of corn stover and product upgrading produced potentially valuable sources of fuel and chemical feedstock. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/149275

Book Catalytic Biomass to Renewable Biofuels and Biomaterials

Download or read book Catalytic Biomass to Renewable Biofuels and Biomaterials written by Yi-Tong Wang and published by MDPI. This book was released on 2020-11-13 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomass is the only renewable carbon source that can be converted into high value-added carbon products. This book presents a collection of studies on the conversion of catalytic biomass to renewable biofuels and biomaterials by chemical conversion, co-combustion technology, and biological conversion technology. The fundamentals and mechanisms of catalytic materials design, process optimization, product development, and by-product utilization are outlined. All articles were contributed by experts in catalysis and bioenergy fields to provide readers with a broad range of perspectives on cutting-edge applications. This book is an ideal reference guide for academic researchers and engineering technicians in the fields of catalytic material synthesis, biomass energy conversion, enzyme catalysis, pyrolysis, combustion, vaporization, and fermentation. It can also be used as a comprehensive reference source for university students in renewable energy science and engineering, agricultural engineering, thermal engineering, chemical engineering, material science, and environmental engineering. This book contains 12 articles: (1) “Catalytic Biomass to Renewable Biofuels and Biomaterials”; (2) “Experimental Design to Improve Cell Growth and Ethanol Production in Syngas Fermentation by Clostridium carboxidivorans”; (3) “Glycerol Acetylation Mediated by Thermally Hydrolysed Biosolids-Based Material”; (4) “Influence of Base-Catalyzed Organosolv Fractionation of Larch Wood Sawdust on Fraction Yields and Lignin Properties”; (5) “Ca-based Catalysts for the Production of High-Quality Bio-Oils from the Catalytic Co-Pyrolysis of Grape Seeds and Waste Tyres”; (6) “Synthesis of Diesel and Jet Fuel Range Cycloalkanes with Cyclopentanone and Furfural”; (7) “Gel-Type and Macroporous Cross-Linked Copolymers Functionalized with Acid Groups for the Hydrolysis of Wheat Straw Pretreated with an Ionic Liquid”; (8) “Role of Humic Acid Chemical Structure Derived from Different Biomass Feedstocks on Fe(III) Bioreduction Activity: Implication for Sustainable Use of Bioresources”; (9) “Selective Production of Terephthalonitrile and Benzonitrile via Pyrolysis of Polyethylene Terephthalate (PET) with Ammonia over Ca(OH)2/Al2O3 Catalysts”; (10) “Experimental Studies on Co-Combustion of Sludge and Wheat Straw”; (11) “Carbonate-Catalyzed Room-Temperature Selective Reduction of Biomass-Derived 5-Hydroxymethylfurfural into 2,5-Bis(hydroxymethyl)furan”; (12) “Clostridium sp. as Bio-Catalyst for Fuels and Chemicals Production in a Biorefinery Context”.

Book Production of Biofuels and Chemicals with Pyrolysis

Download or read book Production of Biofuels and Chemicals with Pyrolysis written by Zhen Fang and published by Springer Nature. This book was released on 2020-10-27 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a collection of studies on state-of-art techniques for converting biomass to chemical products by means of pyrolysis, which are widely applicable to the valorization of biomass. In addition to discussing the fundamentals and mechanisms for producing bio-oils, chemicals, gases and biochar using pyrolysis, it outlines key reaction parameters and reactor configurations for various types of biomass. Written by leading experts and providing a broad range of perspectives on cutting-edge applications, the book is a comprehensive reference guide for academic researchers and industrial engineers in the fields of natural renewable materials, biorefinery of lignocellulose, biofuels, and environmental engineering, and a valuable resource for university students in the fields of chemical engineering, material science and environmental engineering.

Book Materials for Biofuels

Download or read book Materials for Biofuels written by Arthur J. Ragauskas and published by World Scientific. This book was released on 2014 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This invaluable book provides a broad and detailed introduction to the fascinating and hot research subject of transformation of biomass-related materials to biofuels. Biofuel production can be categorized into a variety of novel conversion and refinery development technologies. However, biomass recalcitrance is the biggest challenge blocking the way in biofuel conversion. This book provides an enlightening view of the frontiers in leading pretreatments, downstream enzymatic hydrolysis, fermentation technology, corrosion issues in biofuel and merging biofuels technology into a pulp mill to pave the way for future large-scale biofuel production.

Book Life Cycle Assessments  LCAs  of Pyrolysis based Gasoline and Diesel from Different Regional Feedstocks

Download or read book Life Cycle Assessments LCAs of Pyrolysis based Gasoline and Diesel from Different Regional Feedstocks written by Matthew J. Mihalek and published by . This book was released on 2014 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: Renewable hydrocarbon biofuels are being investigated as possible alternatives to conventional liquid transportation fossil fuels like gasoline, kerosene (aviation fuel), and diesel. A diverse range of biomass feedstocks such as corn stover, sugarcane bagasse, switchgrass, waste wood, and algae, are being evaluated as candidates for pyrolysis and catalytic upgrading to produce drop-in hydrocarbon fuels. This research has developed preliminary life cycle assessments (LCA) for each feedstock-specific pathway and compared the greenhouse gas (GHG) emissions of the hydrocarbon biofuels to current fossil fuels. As a comprehensive study, this analysis attempts to account for all of the GHG emissions associated with each feedstock pathway through the entire life cycle. Emissions from all stages including feedstock production, land use change, pyrolysis, stabilizing the pyrolysis oil for transport and storage, and upgrading the stabilized pyrolysis oil to a hydrocarbon fuel are included. In addition to GHG emissions, the energy requirements and water use have been evaluated over the entire life cycle. The goal of this research is to help understand the relative advantages and disadvantages of the feedstocks and the resultant hydrocarbon biofuels based on three environmental indicators; GHG emissions, energy demand, and water utilization. Results indicate that liquid hydrocarbon biofuels produced through this pyrolysis-based pathway can achieve greenhouse gas emission savings of greater than 50% compared to petroleum fuels, thus potentially qualifying these biofuels under the US EPA RFS2 program. GHG emissions from biofuels ranged from 10.7-74.3 g/MJ from biofuels derived from sugarcane bagasse and wild algae at the extremes of this range, respectively. The cumulative energy demand (CED) shows that energy in every biofuel process is primarily from renewable biomass and the remaining energy demand is mostly from fossil fuels. The CED for biofuel range from 1.25-3.25 MJ/MJ from biofuels derived from sugarcane bagasse to wild algae respectively, while the other feedstock-derived biofuels are around 2 MJ/MJ. Water utilization is primarily from cooling water use during the pyrolysis stage if irrigation is not used during the feedstock production stage. Water use ranges from 1.7 - 17.2 gallons of water per kg of biofuel from sugarcane bagasse to open pond algae, respectively.

Book Sustainable Catalytic Conversion of Biomass for the Production of Biofuels and Bioproducts

Download or read book Sustainable Catalytic Conversion of Biomass for the Production of Biofuels and Bioproducts written by Gabriel Morales and published by MDPI. This book was released on 2020-12-02 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomass is widely considered as a potential alternative to dwindling fossil fuel reserves. There is a large variety of biomass sources (oleaginous, lignocellulosic, algae, etc.), with many possible conversion routes and products. Currently, biomass is not just viewed as a source of biofuels, but also as an interesting feedstock for the production of bio-based chemicals that could largely replace petrochemicals. In this context, the search for new sustainable and efficient alternatives to fossil sources is gaining increasing relevance within the chemical industry. There, the role of catalysis is often critical for the development of clean and sustainable processes, aiming to produce commodity chemicals or liquid fuels with a high efficiency and atom economy. This book gathers works at the cutting edge of investigation in the application of catalysis, for the sustainable conversion of biomass into biofuels and bio-based chemicals.

Book Fast Pyrolysis of Biomass

    Book Details:
  • Author : Robert C Brown
  • Publisher : Royal Society of Chemistry
  • Release : 2017-06-30
  • ISBN : 1788011864
  • Pages : 291 pages

Download or read book Fast Pyrolysis of Biomass written by Robert C Brown and published by Royal Society of Chemistry. This book was released on 2017-06-30 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fast pyrolysis and related catalytic pyrolysis are of increasing interest as pathways to advanced biofuels that closely mimic traditional petroleum products. Research has moved from empirical investigations to more fundamental studies of pyrolysis mechanisms. Theories on the chemical and physical pathways from plant polymers to pyrolysis products have proliferated as a result. This book brings together the latest developments in pyrolysis science and technology. It examines, reviews and challenges the unresolved and sometimes controversial questions about pyrolysis, helping advance the understanding of this important technology and stimulating discussion on the various competing theories of thermal deconstruction of plant polymers. Beginning with an introduction to the biomass-to-biofuels process via fast pyrolysis and catalytic pyrolysis, chapters address prominent questions such as whether free radicals or concerted reactions dominate deconstruction reactions. Finally, the book concludes with an economic analysis of fast pyrolysis versus catalytic pyrolysis. This book will be of interest to advanced students and researchers interested in the science behind renewable fuel technology, and particularly the thermochemical processing of biomass.

Book The Role of Bioenergy in the Emerging Bioeconomy

Download or read book The Role of Bioenergy in the Emerging Bioeconomy written by Carmen Lago and published by Academic Press. This book was released on 2018-10-16 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Role of Bioenergy in the Bioeconomy: Resources, Technologies, Sustainability and Policy provides the reader with a complete understanding on how bioenergy technologies fit into the new bioeconomy paradigm. Sections focus on the main resources and technologies for bioenergy and its integration in energy systems and biorefining chains, analyze the available methodologies for assessing the sustainability of bioenergy, and address and the propose approaches that are demonstrated through concrete case studies. Additionally, the implications of bioenergy in the water-energy and land nexus is presented, along with new challenges and opportunities. This book's strong focus on sustainability of bioenergy, both as a standalone, and in the larger context of a bio-based economy, makes it a useful resource for researchers, professionals and students in the bioenergy field who need tactics to assess the lifecycle and sustainability of bioenergy technologies and their integration into existing systems. - Presents a complete overview of the main challenges that bioenergy will have to overcome in order to play a key role in future energy systems - Explores sustainability aspects in detail, both qualitatively and by applying proposed methodologies to concrete bioenergy case studies - Covers, in detail, the water-energy-land nexus implications and governance aspects

Book Production of Biofuels and Chemicals from Lignin

Download or read book Production of Biofuels and Chemicals from Lignin written by Zhen Fang and published by Springer. This book was released on 2016-09-28 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides state-of-the-art reviews, current research on and the prospects of lignin production, biological, thermal and chemical conversion methods, and lignin technoeconomics. Fundamental topics related to lignin chemistry, properties, analysis, characterization, and depolymerization mechanisms, as well as enzymatic, fungal and bacterial degradation methods are covered. The book also examines practical topics related to technologies for lignin and ultra-pure lignin recovery, activated carbon, carbon fiber production and materials, and addresses the biological conversion of lignin with fungi, bacteria or enzymes to produce chemicals, along with chemical, catalytic, thermochemical and solvolysis conversion methods. Lastly, it presents a case study on practical polyurethane foam production using lignin. Lignin has a bright future and will be an essential feedstock for producing renewable chemicals, biofuels and value-added products. Offering comprehensive information on this promising material, the book represents a valuable resource for students, researchers, academicians and industrialists in the field of biochemistry and energy.

Book Catalytic Biomass to Renewable Biofuels and Biomaterials

Download or read book Catalytic Biomass to Renewable Biofuels and Biomaterials written by Yi-Tong Wang and published by . This book was released on 2020 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomass is the only renew ...

Book Biomass Pyrolysis to Hydrocarbon Fuels in the Petroleum Refining Context  Cooperative Research and Development Final Report  CRADA Number CRD 12 500

Download or read book Biomass Pyrolysis to Hydrocarbon Fuels in the Petroleum Refining Context Cooperative Research and Development Final Report CRADA Number CRD 12 500 written by and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work focuses on developing a thermochemical route to produce biofuels from agricultural wastes such as sugar cane bagasse, wood chips or corn stover; more specifically it intends to develop the biomass pyrolysis route, which produces bio-oils. Production of bio-oils by pyrolysis is a commercial technology. However, bio-oils are currently not being used for liquid fuels production. Although bio-oils can be produced by high-pressure liquefaction, pyrolysis is a less expensive technology. Nevertheless, bio-oils cannot be used directly as a transportation fuel without upgrading, since they are generally unstable, viscous, and acidic. Thus NREL and Petrobras intend to use their combined expertise to develop a two-step route to biofuels production: in the first step, a stable bio-oil is produced by NREL biomass pyrolysis technology, while in the second step it is upgraded by using two distinct catalytic processes under development by Petrobras. The first process converts bio-oil into gasoline, LPG, and fuel oil using the catalytic cracking process, while the second one, converts bio-oil into synthesis gas. Syngas gasification catalysts provided by both NREL and Petrobras will be tested. The work includes experiments at both sites to produce bio-oil and then biofuels, life-cycle analysis of each route, personnel training and development of analytical methods with a duration time of two years.

Book Advanced Biofuels

    Book Details:
  • Author : Juan Carlos Serrano-Ruiz
  • Publisher : CRC Press
  • Release : 2015-05-27
  • ISBN : 1771882212
  • Pages : 324 pages

Download or read book Advanced Biofuels written by Juan Carlos Serrano-Ruiz and published by CRC Press. This book was released on 2015-05-27 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title includes a number of Open Access chapters.Sustainability demands that we meet the needs of our present world without compromising the needs of future generations. As a result, sources and methodologies for renewable energy are being urgently investigated. Biomassoffers one of the most readily implemented, low-cost alternatives to fossil

Book Production of Biofuels and Chemicals from Sustainable Recycling of Organic Solid Waste

Download or read book Production of Biofuels and Chemicals from Sustainable Recycling of Organic Solid Waste written by Zhen Fang and published by Springer Nature. This book was released on 2022-05-18 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers sustainable recycling processes (e.g. physical, biological, chemical, and thermo-chemical) of multiple organic solid wastes, provides methods for material recycle of wastes into value-added products including fuels and commodity chemicals that are able to be directly applied to promote manufacturing processes. Aimed at improving the awareness of effective conversion protocols and for developing innovative biomass conversion processes, this text was conceived as a collection of studies on state-of-art techniques and know-how for production of biofuels and chemicals from sustainable recycling of organic solid wastes. Topics in the text are discussed in terms of addressing recent advances, assessing and highlighting promising new methods or new technological strategies and direct conversion of organic solid wastes to process feeds. Highly-recognized authorities, experts and professionals have contributed individual chapters in selected areas to cover the overall topic in a comprehensive manner.

Book Production of Biofuels and Chemicals with Bifunctional Catalysts

Download or read book Production of Biofuels and Chemicals with Bifunctional Catalysts written by Zhen Fang and published by Springer. This book was released on 2017-12-27 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides state-of-the-art reviews, current research, prospects and challenges of the production of biofuels and chemicals such as furanic biofuels, biodiesel, carboxylic acids, polyols and others from lignocellulosic biomass, furfurals, syngas and γ-valerolactone with bifunctional catalysts, including catalytic, and combined biological and chemical catalysis processes. The bifunctionality of catalytic materials is a concept of not only using multifunctional solid materials as activators, but also design of materials in such a way that the catalytic materials have synergistic characteristics that promote a cascade of transformations with performance beyond that of mixed mono-functional catalysts. This book is a reference designed for researchers, academicians and industrialists in the area of catalysis, energy, chemical engineering and biomass conversion. Readers will find the wealth of information contained in chapters both useful and essential, for assessing the production and application of various biofuels and chemicals by chemical catalysis and biological techniques.

Book Biofuels

    Book Details:
  • Author : Ram Sarup Singh
  • Publisher : CRC Press
  • Release : 2016-11-10
  • ISBN : 1315353601
  • Pages : 467 pages

Download or read book Biofuels written by Ram Sarup Singh and published by CRC Press. This book was released on 2016-11-10 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: This will be a comprehensive multi-contributed reference work, with the Editors being highly regarded alternative fuels experts from India and Switzerland. There will be a strong orientation toward production of biofuels covering such topics as biodiesel from renewable sources, biofuels from biomass, vegetable based feedstocks from biofuel production, global demand for biofuels and economic aspects of biofuel production. Book covers the latest advances in all product areas relative to biofuels. Discusses coverage of public opinion related to biofuels. Chapters will be authored by world class researchers and practitioners in various aspects of biofuels. Provides good comprehensive coverage of biofuels for algae. Presents extensive discussion of future prospects in biofuels.

Book Handbook of Biofuels Production

Download or read book Handbook of Biofuels Production written by Rafael Luque and published by Woodhead Publishing. This book was released on 2016-05-19 with total page 772 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Biofuels Production, Second Edition, discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage. Research and development in this field is aimed at improving the quality and environmental impact of biofuels production, as well as the overall efficiency and output of biofuels production plants. The book provides a comprehensive and systematic reference on the range of biomass conversion processes and technology. Key changes for this second edition include increased coverage of emerging feedstocks, including microalgae, more emphasis on by-product valorization for biofuels' production, additional chapters on emerging biofuel production methods, and discussion of the emissions associated with biofuel use in engines. The editorial team is strengthened by the addition of two extra members, and a number of new contributors have been invited to work with authors from the first edition to revise existing chapters, thus offering fresh perspectives. - Provides systematic and detailed coverage of the processes and technologies being used for biofuel production - Discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage - Reviews the production of both first and second generation biofuels - Addresses integrated biofuel production in biorefineries and the use of waste materials as feedstocks

Book Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion II

Download or read book Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion II written by Marcel Schlaf and published by Springer. This book was released on 2015-10-30 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume II presents the latest advances in catalytic hydrodeoxygenation and other transformations of some cellulosic platform chemicals to high value-added products. It presents the theoretical evaluation of the energetics and catalytic species involved in potential pathways of catalyzed carbohydrate conversion, pathways leading to the formation of humin-based by-products, and thermal pathways in deriving chemicals from lignin pyrolysis and hydrodeoxygenation. Catalytic gasification of biomass under extreme thermal conditions as an extension of pyrolysis is also discussed. Marcel Schlaf, PhD, is a Professor at the Department of Chemistry, University of Guelph, Canada. Z. Conrad Zhang, PhD, is a Professor at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.