Download or read book Dynamics and Bifurcations written by Jack K. Hale and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, due primarily to the proliferation of computers, dynamical systems has again returned to its roots in applications. It is the aim of this book to provide undergraduate and beginning graduate students in mathematics or science and engineering with a modest foundation of knowledge. Equations in dimensions one and two constitute the majority of the text, and in particular it is demonstrated that the basic notion of stability and bifurcations of vector fields are easily explained for scalar autonomous equations. Further, the authors investigate the dynamics of planar autonomous equations where new dynamical behavior, such as periodic and homoclinic orbits appears.
Download or read book Elements of Applied Bifurcation Theory written by Yuri Kuznetsov and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
Download or read book Global Bifurcations and Chaos written by Stephen Wiggins and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: Global Bifurcations and Chaos: Analytical Methods is unique in the literature of chaos in that it not only defines the concept of chaos in deterministic systems, but it describes the mechanisms which give rise to chaos (i.e., homoclinic and heteroclinic motions) and derives explicit techniques whereby these mechanisms can be detected in specific systems. These techniques can be viewed as generalizations of Melnikov's method to multi-degree of freedom systems subject to slowly varying parameters and quasiperiodic excitations. A unique feature of the book is that each theorem is illustrated with drawings that enable the reader to build visual pictures of global dynamcis of the systems being described. This approach leads to an enhanced intuitive understanding of the theory.
Download or read book Bifurcations and Catastrophes written by Michel Demazure and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a lecture course, this text gives a rigorous introduction to nonlinear analysis, dynamical systems and bifurcation theory including catastrophe theory. Wherever appropriate it emphasizes a geometrical or coordinate-free approach allowing a clear focus on the essential mathematical structures. It brings out features common to different branches of the subject while giving ample references for more advanced or technical developments.
Download or read book Bifurcations of Planar Vector Fields written by Freddy Dumortier and published by . This book was released on 2014-01-15 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Dynamics and Bifurcations of Non Smooth Mechanical Systems written by Remco I. Leine and published by Springer Science & Business Media. This book was released on 2013-03-19 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph combines the knowledge of both the field of nonlinear dynamics and non-smooth mechanics, presenting a framework for a class of non-smooth mechanical systems using techniques from both fields. The book reviews recent developments, and opens the field to the nonlinear dynamics community. This book addresses researchers and graduate students in engineering and mathematics interested in the modelling, simulation and dynamics of non-smooth systems and nonlinear dynamics.
Download or read book Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields written by John Guckenheimer and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
Download or read book Bifurcations written by Takashi Matsumoto and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bifurcation originally meant "splitting into two parts. " Namely, a system under goes a bifurcation when there is a qualitative change in the behavior of the sys tem. Bifurcation in the context of dynamical systems, where the time evolution of systems are involved, has been the subject of research for many scientists and engineers for the past hundred years simply because bifurcations are interesting. A very good way of understanding bifurcations would be to see them first and study theories second. Another way would be to first comprehend the basic concepts and theories and then see what they look like. In any event, it is best to both observe experiments and understand the theories of bifurcations. This book attempts to provide a general audience with both avenues toward understanding bifurcations. Specifically, (1) A variety of concrete experimental results obtained from electronic circuits are given in Chapter 1. All the circuits are very simple, which is crucial in any experiment. The circuits, however, should not be too simple, otherwise nothing interesting can happen. Albert Einstein once said "as simple as pos sible, but no more" . One of the major reasons for the circuits discussed being simple is due to their piecewise-linear characteristics. Namely, the voltage current relationships are composed of several line segments which are easy to build. Piecewise-linearity also simplifies rigorous analysis in a drastic man ner. (2) The piecewise-linearity of the circuits has far reaching consequences.
Download or read book Continuation and Bifurcations Numerical Techniques and Applications written by Dirk Roose and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the NATO Advanced Research Workshop, Leuven, Belgium, September 18-22, 1989
Download or read book Local Bifurcations Center Manifolds and Normal Forms in Infinite Dimensional Dynamical Systems written by Mariana Haragus and published by Springer Science & Business Media. This book was released on 2010-11-23 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: An extension of different lectures given by the authors, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems provides the reader with a comprehensive overview of these topics. Starting with the simplest bifurcation problems arising for ordinary differential equations in one- and two-dimensions, this book describes several tools from the theory of infinite dimensional dynamical systems, allowing the reader to treat more complicated bifurcation problems, such as bifurcations arising in partial differential equations. Attention is restricted to the study of local bifurcations with a focus upon the center manifold reduction and the normal form theory; two methods that have been widely used during the last decades. Through use of step-by-step examples and exercises, a number of possible applications are illustrated, and allow the less familiar reader to use this reduction method by checking some clear assumptions. Written by recognised experts in the field of center manifold and normal form theory this book provides a much-needed graduate level text on bifurcation theory, center manifolds and normal form theory. It will appeal to graduate students and researchers working in dynamical system theory.
Download or read book Methods of Bifurcation Theory written by S.-N. Chow and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: An alternative title for this book would perhaps be Nonlinear Analysis, Bifurcation Theory and Differential Equations. Our primary objective is to discuss those aspects of bifurcation theory which are particularly meaningful to differential equations. To accomplish this objective and to make the book accessible to a wider we have presented in detail much of the relevant background audience, material from nonlinear functional analysis and the qualitative theory of differential equations. Since there is no good reference for some of the mate rial, its inclusion seemed necessary. Two distinct aspects of bifurcation theory are discussed-static and dynamic. Static bifurcation theory is concerned with the changes that occur in the structure of the set of zeros of a function as parameters in the function are varied. If the function is a gradient, then variational techniques play an important role and can be employed effectively even for global problems. If the function is not a gradient or if more detailed information is desired, the general theory is usually local. At the same time, the theory is constructive and valid when several independent parameters appear in the function. In differential equations, the equilibrium solutions are the zeros of the vector field. Therefore, methods in static bifurcation theory are directly applicable.
Download or read book Bifurcations and Instabilities in Geomechanics written by J.F. Labuz and published by CRC Press. This book was released on 2003-01-01 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a sampling of papers presented at the June 2-5, 2002 International Workshop on Bifurcations andamp; Instabilities in Geomechanics (IWBI 2002). The scope of the Workshop includes analytical approaches, numerical methods, and experimental techniques.
Download or read book Bifurcations of Planar Vector Fields written by Jean-Pierre Francoise and published by Springer. This book was released on 2006-11-14 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Singularities Bifurcations and Catastrophes written by James Montaldi and published by Cambridge University Press. This book was released on 2021-06-24 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook gives a contemporary account of singularity theory and its principal application, bifurcation theory.
Download or read book Controlling Chaos and Bifurcations in Engineering Systems written by Guanrong Chen and published by CRC Press. This book was released on 1999-09-28 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last two decades, chaos in engineering systems has moved from being simply a curious phenomenon to one with real, practical significance and utility. Engineers, scientists, and mathematicians have similarly advanced from the passive role of analyzing chaos to their present, active role of controlling chaos-control directed not only at suppression, but also at exploiting its enormous potential. We now stand at the threshold of major advances in the control and synchronization of chaos for new applications across the range of engineering disciplines. Controlling Chaos and Bifurcations in Engineering Systems provides a state-of-the-art survey of the control-and anti-control-of chaos in dynamical systems. Internationally known experts in the field join forces in this volume to form this tutorial-style combination of overview and technical report on the latest advances in the theory and applications of chaos control. They detail various approaches to control and show how designers can use chaos to create a wider variety of properties and greater flexibility in the design process. Chaos control promises to have a major impact on novel time- and energy-critical engineering applications. Within this volume, readers will find many challenging problems-yet unsolved-regarding both the fundamental theory and potential applications of chaos control and anti-control. Controlling Chaos and Bifurcations in Engineering Systems will bring readers up-to-date on recent development in the field and help open the door to new advances.
Download or read book Local and Semi Local Bifurcations in Hamiltonian Dynamical Systems written by Heinz Hanßmann and published by Springer. This book was released on 2006-10-18 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book demonstrates that while elliptic and hyperbolic tori determine the distribution of maximal invariant tori, they themselves form n-parameter families. Therefore, torus bifurcations of high co-dimension may be found in a single given Hamiltonian system, absent untypical conditions or external parameters. The text moves logically from the integrable case, in which symmetries allow for reduction to bifurcating equilibria, to non-integrability, where smooth parametrisations must be replaced by Cantor sets.
Download or read book Singularities and Groups in Bifurcation Theory written by Martin Golubitsky and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has been written in a frankly partisian spirit-we believe that singularity theory offers an extremely useful approach to bifurcation prob lems and we hope to convert the reader to this view. In this preface we will discuss what we feel are the strengths of the singularity theory approach. This discussion then Ieads naturally into a discussion of the contents of the book and the prerequisites for reading it. Let us emphasize that our principal contribution in this area has been to apply pre-existing techniques from singularity theory, especially unfolding theory and classification theory, to bifurcation problems. Many ofthe ideas in this part of singularity theory were originally proposed by Rene Thom; the subject was then developed rigorously by John Matherand extended by V. I. Arnold. In applying this material to bifurcation problems, we were greatly encouraged by how weil the mathematical ideas of singularity theory meshed with the questions addressed by bifurcation theory. Concerning our title, Singularities and Groups in Bifurcation Theory, it should be mentioned that the present text is the first volume in a two-volume sequence. In this volume our emphasis is on singularity theory, with group theory playing a subordinate role. In Volume II the emphasis will be more balanced. Having made these remarks, Iet us set the context for the discussion of the strengths of the singularity theory approach to bifurcation. As we use the term, bifurcation theory is the study of equations with multiple solutions.